
Server tuning recommendations

REST client tuning
Excessive logging supression

UDP tuning
UDP socket buffers tuning on system level

Channel load optimization
Publisher bitrate limiting
Server bitrate limiting

Changing dynamic ports range in Linux
Adjusting the maximum number of opened files

Legacy settings (before build5.2.762)
Using environment variable (since build5.2.762)
Using service parameter while launching from non-root user (since build5.2.801)
Internal command to change file descriptors limit

Traffic encryption in a separate thread for each client session
Stream distribution optimization

Server default settings are mostly universal and need to be tuned to certain client case.

REST client tuning
When are used, on every WCS server action (establishing client connection, publishing and playing a stream, making a SIP call etc) HTTP REST hooks
REST connection to backend server is established.With a large number of simultaneously publishing clients or subscribers, with the default WCS settings
it is possible to exhaust the WCS REST client thread pool, that is lead to deadlocks. Then, server stops to publish and play streams.

By default, a maximum number of simultaneous REST connections is set to 200 with the following parameterin fileflashphoner.properties

rest_max_connections=200

To escape thred poolexhausting and deadlocks this value should be reduced, for example

rest_max_connections=20

If are not used, REST client can be disabled with the following parameterREST hooks

disable_rest_requests=true

Excessive logging supression

When are used, REST client operations, EchoApp default backend operations and REST API server operations are written to WCS core logs. REST hooks
That leads to large number of entries in the log file and, therefore, inceases the server load. The excessive logging may be decreased if necessary using
the following parameters in file:log4j.properties

log4j.logger.RestClient=WARN
log4j.logger.EchoApp=WARN
log4j.logger.RestApiRouter=WARN

UDP tuning
Streaming mediadata are transferred with UDP packets. Those packets can be dropped, for example if server does not have enough time to parse
packet queue, that leads to picture quality loss and freezes. To escape this it is necessary to tune UDP sockets buffers with the following settings inflashp

filehoner.properties

rtp_receive_buffer_size=131072
rtp_send_buffer_size =131072

and to tune system queues with command

ip link set txqueuelen 2000 dev eth0

https://docs.flashphoner.com/display/WCS52EN/REST+Hooks
https://docs.flashphoner.com/display/WCS52EN/Settings+file+flashphoner.properties
https://docs.flashphoner.com/display/WCS52EN/REST+Hooks
https://docs.flashphoner.com/display/WCS52EN/REST+Hooks
https://docs.flashphoner.com/display/WCS52EN/Settings+file+log4j.properties
https://docs.flashphoner.com/display/WCS52EN/Settings+file+flashphoner.properties
https://docs.flashphoner.com/display/WCS52EN/Settings+file+flashphoner.properties

To diagnose UDP problem, it is necessary to track UDP packets dropping with command

dropwatch -l kas
>start

UDP socket buffers tuning on system level

If UDP is used to publish or play high bitrate streams (for instance, as CDN internal transport), UDP socket buffers tuning may be required

sudo sysctl -w net.core.rmem_max=26214400
sudo sysctl -w net.core.rmem_default=26214400

In this case the server performance should be enough to handle all the traffic packets. Otherwise, a translation quality will drop (a freezes will appear),
and CPU will become a bottleneck.

Channel load optimization
Users' playback picture quality depends on bitrate: the higher the bitrate, the higher the quality. However, the higher the bitrate, the higher data transfer
channel load and, ifthe bandwidth between the server and clients is limited,there is a possibility that the channel will be fully loaded. This leads the bitrate
droppingand a sharp decline in quality.

In this regard, it is necessary to limit the bitrate to ensuresufficient picture quality with an acceptable channel load.

Publisher bitrate limiting

To reduce the load to the channel from publisher to server, maximum and minimum bitrate values in kbps may be set in publisher script with JavaScript
API

session.createStream({
 name: streamName,
 display: localVideo,
 constraints: {
 video: {
 minBitrate: 500
 maxBitrate: 1000
 }
 }
 ...
}).publish();

Server bitrate limiting

Minimum and maximum bitrate values in bps on server may be set with the following parameters in fileflashphoner.properties

webrtc_cc_min_bitrate=500000
webrtc_cc_max_bitrate=1000000

To exclude fast bitrate rise bu=y browser, the following parameter should be set

webrtc_cc2_twcc=false

Stream decoding on demand only must be switched on to reduce server load:

streaming_video_decoder_fast_start=false

Changing dynamic ports range in Linux

https://docs.flashphoner.com/display/WCS52EN/Settings+file+flashphoner.properties

Dynamic or ephemeral port is a temporary port that is opened when establishing IP-connection from certain range of TCP/IP stack. Many Linux kernel
versions use ports range 32768 — 61000 as dymanic ports. Enter the following command to check what range is used on server

sysctl net.ipv4.ip_local_port_range

If this range overlaps with WCS standard , it should be changed with the following commandports

sysctl -w net.ipv4.ip_local_port_range="59999 63000"

Adjusting the maximum number of opened files

Legacy settings (before build)5.2.762

In the launch script that is in subfolder in WCS home folder, for examplewebcallserver bin

/usr/local/FlashphonerWebCallServer/bin/webcallserver

in function the maximum number of opened files is setstart()

function start() {
 ...
 echo -n $"$PRODUCT: starting"

 ulimit -n 20000
 if [["$1" == "standalone"]]; then
 ...
 fi
 ...
}

By default, this value is set to 20000, but it may be increased if necessary, following the limitations of the operating system used.

Using environment variable (since build)5.2.762

Since build , maximum opened files limit can be set using the following environment variable5.2.762

WCS_FD_LIMIT=20000

in setenv.sh file. When updating WCS from previous builds, this variable should be added to setenv.sh manually, for example

export WCS_FD_LIMIT=100000

Unlike the webcallserver startup script, the setenv.sh file is not overwritten on subsequent updates, therefore it is not necessary to restore this setting
after every update.

Using service parameter while launching from non-root user (since build)5.2.801

Since build5.2.801,WCS is launching from 'flashphoner' user for better security. In this case,maximum opened files limit can be set using service
parameters

sudo nano /etc/systemd/system/webcallserver.service

Maximum opened files limit is set with parameter, for exampleLimitNOFILE

https://docs.flashphoner.com/pages/viewpage.action?pageId=9241885
https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.762.tar.gz
https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.762.tar.gz
https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.762.tar.gz
https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.801.tar.gz
https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.801.tar.gz

[Service]
User=flashphoner
Group=flashphoner
LimitNOFILE=100000
...

Internal command to change file descriptors limit

Since build the following command can be used to set file descriptors limit:5.2.1255

sudo ./webcallserver set-fd-limit 100000

WCS will be stopped before settings changing and will be automatically started after settings changing to apply them.

If a new value is less than the default one (20000), erroe message will be displayed, and changes will not be applied.

Traffic encryption in a separate thread for each client session
By default, one CPU thread encrypts medai traffic for all the client sessions. This leads to one CPU core overload by such thread, espacyally on low-
power servers, for big subscribers amount. Then, server can not send mediapackets to all subscribers, and streams viewed are degrading, FPS lowering
and freezing.

To distribute the load evenly across the CPU cores, it is necessary to enable traffic encryption in a separate thread for each client session with the
following parameters

rtp_paced_sender=true
rtp_paced_sender_initial_rate=200000
rtp_paced_sender_increase_interval=50
rtp_paced_sender_k_up=0.9

and restart WCS.

Stream distribution optimization
A stream playback quality may drop when a number of subscribers are viewing it simutlaneouly (from 100 and more): low FPS, freezes. However, server
capacity and channel bandwidth may be enough. In this case it is recommended to enable multithreaded stream distribution to subscribers using the
following parameter

streaming_distributor_subgroup_enabled=true

In this case, audio and video client sessions are distributed by groups.

Maximum number of video sessions per group can be set with the following parameter

streaming_distributor_subgroup_size=50

Maximum number of audio sessions per group can be set with the following parameter

streaming_distributor_audio_subgroup_size=500

Frame queue size per group and maximum frame waiting time (in milliseconds)are set by the following parameters

streaming_distributor_subgroup_queue_size=300
streaming_distributor_subgroup_queue_max_waiting_time=5000

for video and

https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.1255.tar.gz

streaming_distributor_audio_subgroup_queue_size=300
streaming_distributor_audio_subgroup_queue_max_waiting_time=5000

for audio sessions respectively.

	Server tuning recommendations

