Перехват и обработка декодированных кадров при помощи OpenCV

- Описание
- Сборка OpenCV
- Реализация перехватчика с использованием OpenCV
- Тестирование

Описание

Механизм перехвата и обработки декодированных кадров позволяет интегрировать мощную библиотеку обработки изображений OpenCV. Эта возможность может быть полезна, например, при реализации дополненной реальности на стороне сервера, и в других подобных случаях, и доступна начиная со сборки WCS5.2.1914.

Для того, чтобы реализовать собственный класс для интеграции OpenCV, прежде всего, необходимо собрать саму библиотеку OpenCV.

Сборка OpenCV

Рассмотрим сборку OpenCV 4.9.0 на Centos 7, чтобы обеспечить совместимость с glibc 2.17.

1. Устанавливаем JDK 8 и ANT

yum install openjdk-8-jdk ant

2. Определяем местоположение каталога установки JDK и настраиваем переменную JAVA_HOME

export JAVA_HOME=\$(echo \$(readlink -f \$(which javac)) | sed 's/\/bin\/javac//g')

3. Устанавливаем CMake 3.6.2 или новее

```
wget https://cmake.org/files/v3.6/cmake-3.6.2.tar.gz
tar -zxf cmake-3.6.2.tar.gz
cd cmake-3.6.2
./bootstrap --prefix=/usr/local
make -j$(nproc)
make install
```

4. Устанавливаем GCC 11 и переключаемся на него для сборки OpenCV

```
yum install centos-release-scl
yum install devtoolset-11-gcc devtoolset-11-gcc-c++
scl enable devtoolset-11 -- bash
```

5. Скачиваем и распаковываем исходные тексты OpenCV

```
wget -0 opencv-490.zip https://github.com/opencv/opencv/archive/4.9.0.zip
unzip opencv-490.zip
```

6. Настраиваем сборку

```
cd opencv-490
mkdir build
cd build
cmake ..
```

7. Собираем OpenCV

```
make -j $(nproc)
```

8. Копируем собранные модули в каталог установки WCS

```
cp bin/opencv-490.jar /usr/local/FlashphonerWebCallServer/lib/custom
cp -r lib/* /usr/local/FlashphonerWebCallServer/lib/so
```

Реализация перехватчика с использованием OpenCV

Для перехвата декодированных кадров необходимо разработатькласс на языке Java, реализующий интерфейс `lDecodedFrameInterceptor`. Функция этого класса frameDecoded() будет получать декодированные кадры в формате YUV 1420, конвертировать их средствами OpenCV в формат RGB, применять размытие, конвертировать результат обратно в YUV 1420 и перезаписывать данные фрейма не попиксельно, а одним массивом при помощи метода Frame.rewriteData()

TestInterceptor.java

```
// Package name should be strictly defined as com.flashphoner.frameInterceptor
package com.flashphoner.frameInterceptor;
// Import decoded frame interceptor interface
import com.flashphoner.sdk.media.IDecodedFrameInterceptor;
// Import YUV frame description
import com.flashphoner.sdk.media.YUVFrame;
// Import OpenCV classes
import org.opencv.core.Core;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.Size;
import org.opencv.imgproc.Imgproc;
public class TestInterceptor implements IDecodedFrameInterceptor {
    static {
       System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
    }
    @Override
    public void frameDecoded(String streamName, YUVFrame frame) {
       int width = frame.getWidth();
       int height = frame.getHeight();
       // Calculate chroma height of YUV frame
       int chromaHeight = height * 3 / 2;
       Mat srcYuvMatrix = new Mat(chromaHeight, width, CvType.CV_8UC1, frame.getData());
       // Create RGB matrix for manipulations
       Mat rgbMatrix = new Mat(height, width, CvType.CV_8UC3);
       Mat blurredMatrix = new Mat(height, width, CvType.CV_8UC3);
        // Convert YUV matrix to RGB matrix
       Imgproc.cvtColor(srcYuvMatrix, rgbMatrix, Imgproc.COLOR_YUV2RGB_I420);
        // Apply blur to matrix
       Imgproc.GaussianBlur(rgbMatrix, blurredMatrix, new Size(15, 15), 0);
       Mat dstYuvMatrix = new Mat(chromaHeight, width, CvType.CV_8UC1);
        // Convert RGB back to YUV
       Imgproc.cvtColor(blurredMatrix, dstYuvMatrix, Imgproc.COLOR_RGB2YUV_I420);
       byte[] dstData = new byte[chromaHeight * width];
       // get data from destination matrix
       dstYuvMatrix.get(0,0, dstData);
        // Current method rewrites full frame data with provided dstData
        // This method is recommended for a complete rewrite of the frame, rather than pixel-by-pixel rewriting
due to color mismatch
       frame.rewriteData(dstData);
    }
}
```

Затем следует скомпилировать класс в байт-код. Для этого создаем дерево каталогов, соответствующее названию пакета написанного класса

mkdir -p com/flashphoner/frameInterceptor

и выполняем команду

javac -cp /usr/local/FlashphonerWebCallServer/lib/wcs-core.jar:/usr/local/FlashphonerWebCallServer/lib/custom /opencv-490.jar ./com/flashphoner/frameInterceptor/TestInterceptor.java Теперь упакуем скомпилированный код в jar-файл

jar -cf testinterceptor.jar ./com/flashphoner/frameInterceptor/TestInterceptor.class

и скопируем его в каталог, где размещены собственные Java библиотеки для интеграции с WCS

cp testinterceptor.jar /usr/local/FlashphonerWebCallServer/lib/custom

Для того, чтобы использовать разработанный класс, необходимо указать имя его пакета в настройкев файлeflashphoner.properties

decoded_frame_interceptor=com.flashphoner.frameInterceptor.TestInterceptor

и перезапустить WCS.

Тестирование

1. Опубликуйте поток в примере Two Way Streaming

Two-way Streaming								
I	Local			Player				
	manycarn							
test	Stop		6fe4	Play	Available			
PUB	PUBLISHING							
{"count": 23}						Ŧ		
	Send payload as object							
	wss://test1.flashphoner.com	n:8443		Disconnect				
	ESTABLISHED							

2. Проиграйте поток в примере Player с указанием разрешения, чтобы включился транскодинг, например https://test1.flashphoner.com:8444 /client2/examples/demo/streaming/player.html?resolution=320x240,гдеtest1.flashphoner.com - адрес WCS сервера

	Player
WCS URL	wss://test1.flashphoner.com:8443
Stream	test
Volume	
Full Screen	PLAYING Stop

Изображение будет размыто