
Capturing VOD from a file

Overview
Supported formats and codecs
Operation flowchart

Quick manual on testing
Call flow
VOD loop
VOD capturing from AWS S3 or from other S3 compatible storage

Operation flowchart
Set up

S3 credentials configuration
AWS
Digital Ocean Spaces
Selectel

Capturing VOD stream from file while it is downloading
File format requirements
File name requirements

VOD capture management with REST API
REST queries and responses
Parameters
VOD looping on demand
Known limits

VOD stream publishing timeout after all subscribers gone off
Known issues

WCS offers possibility to capture a media stream from an MP4 file located on the local disk of the server (Video on Demand, VOD). The received stream
can be played, republished, managed just like any stream on the WCS server. First of all, this option is intended to play previously recorded broadcasts
in a browsers or a mobile application on the client side.

Overview
To capture VOD from a file, specify a link to the vod file as a stream name when calling the session.createStream() function, as follows:

vod://sample.mp4

where sample.mp4 is the name of the file that should be located in /usr/local/FlashphonerWebCallServer/media folder. Since build , a custom 5.2.687
folder can specified with the following parameter in fileflashphoner.properties

media_dir=/usr/local/FlashphonerWebCallServer/media

If a file with such name does not exist, the server returns the StreamStatusEvent FAILED message, where the "info" field has the reason: "File not found".

A stream created this way can be displayed to one user (personal VOD). Second viewer cannot subscribe to personal VOD stream, such stream cannot
be transcoded, added to mixer or played by HLS.

If a full-featured online-broadcast is required, provide the link to a file as follows:

vod-live://sample.mp4

Multiple user can connect to such a stream simultaneously. VOD live stream can be transcoded, added to mixer or played by HLS.

Supported formats and codecs

Container: MP4
Video: H.264
Audio: AAC

Operation flowchart

https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.687.tar.gz
https://docs.flashphoner.com/display/WCS52EN/Settings+file+flashphoner.properties

1.
2.

3.
4.
5.
6.

The browser connects to the server via WebSocket and sends the publish command.
The browser captures the microphone and the camera and sends the WebRTC stream as H.264 + AAC to the server, enabling recording with
the parameter record: true.
The WCS server records the stream to a file.
The browser stops publishing.
The second browser establishes a connection via WebSocket, creates a stream, specifies the file name, and sends the play command.
The second browser receives the WebRTC stream and plays this stream on the page.

Quick manual on testing
1. For the test we use the web application to play the file.Player

2. Upload the file to the /usr/local/FlashphonerWebCallServer/media/ directory.

3. Open the Player web application and enter the name of the file in the Stream field:

https://demo.flashphoner.com/client2/examples/demo/streaming/player/player.html

4. Click Start. The file starts playing:

5. Click Stop to stop the playback.

6. Delete the file from /usr/local/FlashphonerWebCallServer/media/

7. Click Start. You should see the FAILED status and the "File not found" message:

Call flow
Below is the call flow when using:

the Stream Recording example to publish the stream and record the file

recording.html

recording.js

the Player example to play the VOD stream

player.html

player.js

https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/stream_recording/recording.html
https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/stream_recording/recording.js
https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/player/player.html
https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/player/player.js

1. Establishing a connection to the server to publish and record the stream.

Flashphoner.createSession();code

 Flashphoner.createSession({urlServer: url}).on(SESSION_STATUS.ESTABLISHED, function(session){
 ...
 });

2. Receiving from the server an event confirming successful connection.

ConnectionStatusEvent ESTABLISHEDcode

https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/stream_recording/recording.js#L60
https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/stream_recording/recording.js#L60

 Flashphoner.createSession({urlServer: url}).on(SESSION_STATUS.ESTABLISHED, function(session){
 setStatus(session.status());
 //session connected, start playback
 publishStream(session);
 }).on(SESSION_STATUS.DISCONNECTED, function(){
 ...
 }).on(SESSION_STATUS.FAILED, function(){
 ...
 });

3. Publishing the stream with recording enabled.

stream.publish();code

 session.createStream({
 name: streamName,
 display: localVideo,
 record: true,
 receiveVideo: false,
 receiveAudio: false
 ...
 }).publish();

4. Receiving from the server an event confirming successful publishing of the stream.

StreamStatusEvent, status PUBLISHINGcode

 session.createStream({
 name: streamName,
 display: localVideo,
 record: true,
 receiveVideo: false,
 receiveAudio: false
 }).on(STREAM_STATUS.PUBLISHING, function(stream) {
 setStatus(stream.status());
 onStarted(stream);
 }).on(STREAM_STATUS.UNPUBLISHED, function(stream) {
 ...
 }).on(STREAM_STATUS.FAILED, function(stream) {
 ...
 }).publish();

5. Sending audio and video stream via WebRTC.

6. Stopping publishing the stream.

stream.stop();code

function onStarted(stream) {
 $("#publishBtn").text("Stop").off('click').click(function(){
 $(this).prop('disabled', true);
 stream.stop();
 }).prop('disabled', false);
}

7. Receiving from the server an event confirming unpublishing of the stream.

StreamStatusEvent, status UNPUBLISHEDcode

https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/stream_recording/recording.js#L76
https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/stream_recording/recording.js#L76
https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/stream_recording/recording.js#L21
https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/stream_recording/recording.js#L76

 session.createStream({
 name: streamName,
 display: localVideo,
 record: true,
 receiveVideo: false,
 receiveAudio: false
 }).on(STREAM_STATUS.PUBLISHING, function(stream) {
 ...
 }).on(STREAM_STATUS.UNPUBLISHED, function(stream) {
 setStatus(stream.status());
 showDownloadLink(stream.getRecordInfo());
 onStopped();
 }).on(STREAM_STATUS.FAILED, function(stream) {
 ...
 }).publish();

8. Establishing a connection to the server to play the stream.

Flashphoner.createSession();code

 Flashphoner.createSession({urlServer: url}).on(SESSION_STATUS.ESTABLISHED, function(session){
 ...
 });

9. Receiving from the server an event confirming successful connection.

ConnectionStatusEvent ESTABLISHEDcode

 Flashphoner.createSession({urlServer: url}).on(SESSION_STATUS.ESTABLISHED, function(session){
 setStatus(session.status());
 //session connected, start playback
 playStream(session);
 }).on(SESSION_STATUS.DISCONNECTED, function(){
 ...
 }).on(SESSION_STATUS.FAILED, function(){
 ...
 });

10. Playing the stream.

stream.play();code

 if (Flashphoner.getMediaProviders()[0] === "MSE" && mseCutByIFrameOnly) {
 options.mediaConnectionConstraints = {
 cutByIFrameOnly: mseCutByIFrameOnly
 }
 }
 if (resolution_for_wsplayer) {
 options.playWidth = resolution_for_wsplayer.playWidth;
 options.playHeight = resolution_for_wsplayer.playHeight;
 } else if (resolution) {
 options.playWidth = resolution.split("x")[0];
 options.playHeight = resolution.split("x")[1];
 }
 stream = session.createStream(options).on(STREAM_STATUS.PENDING, function(stream) {
 ...
 });
 stream.play();

11. Receiving from the server an event confirming successful playing of the stream.

https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/player/player.js#L108
https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/player/player.js#L108
https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/player/player.js#L129

StreamStatusEvent, status PLAYINGcode

 stream = session.createStream(options).on(STREAM_STATUS.PENDING, function(stream) {
 ...
 }).on(STREAM_STATUS.PLAYING, function(stream) {
 $("#preloader").show();
 setStatus(stream.status());
 onStarted(stream);
 }).on(STREAM_STATUS.STOPPED, function() {
 ...
 }).on(STREAM_STATUS.FAILED, function(stream) {
 ...
 }).on(STREAM_STATUS.NOT_ENOUGH_BANDWIDTH, function(stream){
 ...
 });
 stream.play();

12. Receiving of the audio-video stream via Websocket and playing it via WebRTC

13. Stopping publishing the stream.

stream.stop();code

function onStarted(stream) {
 $("#playBtn").text("Stop").off('click').click(function(){
 $(this).prop('disabled', true);
 stream.stop();
 }).prop('disabled', false);
 ...
}

14. Receiving from the server an event confirming successful stopping of the playback of the stream.

StreamStatusEvent, status STOPPEDcode

 stream = session.createStream(options).on(STREAM_STATUS.PENDING, function(stream) {
 ...
 }).on(STREAM_STATUS.PLAYING, function(stream) {
 ...
 }).on(STREAM_STATUS.STOPPED, function() {
 setStatus(STREAM_STATUS.STOPPED);
 onStopped();
 }).on(STREAM_STATUS.FAILED, function(stream) {
 ...
 }).on(STREAM_STATUS.NOT_ENOUGH_BANDWIDTH, function(stream){
 ...
 });
 stream.play();

VOD loop
VOD live translation supports VOD loop: after end of file, capturing starts from file begin. This feature is enabled with the following parameter inflashphone

filer.properties

vod_live_loop=true

VOD capturing from AWS S3 or from other S3 compatible storage

https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/player/player.js#L141
https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/player/player.js#L57
https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/player/player.js#L141
https://docs.flashphoner.com/display/WCS5EN/Settings+file+flashphoner.properties
https://docs.flashphoner.com/display/WCS5EN/Settings+file+flashphoner.properties

VOD stream can be captured from file placed to AWS S3 storage. Comparing with VOD capture from local disk, file from external storage is downloaded
and captured sequentally.

To capture VOD from AWS S3 file, specify a link to the vod file as a stream name when calling the session.createStream() function, as follows:

vod://s3/bucket/sample.mp4

where

bucket is S3 bucket name
sample.mp4 is file name

Since build it is possible to set the full file URL in S3 storage, this allows to capture VOD from other S3 storages (Digital Ocean, Selectel etc)5.2.939

Digital Ocean Spaces URL example

vod://s3/https://ams3.digitaloceanspaces.com/myspace/folder/file.mp4

Selectel URL example

vod://s3/https://s3.selcdn.ru/mystorage/file.mp4

Operation flowchart

https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.939.tar.gz

1. Browser requests VOD capture from AWS file

2. WCS server sends request to AWS

3. File is downloaded to WCS server

4. WebRTC stream from file is sending to browser for playback

Set up

S3 credentials configuration

AWS

To download files from AWS S3 bucket, S3 credentials must be set in fileflashphoner.properties

aws_s3_credentials=zone;login;hash

Where

zone - AWS region where bucket is placed
login - Access Key ID
hash - Secret Accesss Key

S3 credentials setting example:

aws_s3_credentials=eu-central-1;AA22BB33CC44DE;DhlAkpZ4adclHhbLwhTNL4hvWTo80Njo

Digital Ocean Spaces

To download files from DO Spaces set the credentials as

aws_s3_credentials=ams3;access_key;secret

Where

ams3 - digitaloceanspaces.com subdomain
access_key - storage access key
secret - storage access secret code

Selectel

To download files fromSelectel S3set the credentials as

aws_s3_credentials=ru-1a;login;password

Where

ru-1a - storage region
login - user name
password - password

Capturing VOD stream from file while it is downloading

To capture stream from file while it is downloading, the following parameter should be set

vod_mp4_container_new=true

If channel bandwidth between WCS and S3 storage is low, or this channel is not stable enough, file bufferization may be enabled. The buffer size is set in
milliseconds with the following parameter

vod_mp4_container_new_buffer_ms=10000

In this case, buffer size is 10 seconds.

https://docs.flashphoner.com/display/WCS5EN/Settings+file+flashphoner.properties

File format requirements

Header section (moov) should always be before data section (mdat). File structure should be like this:

Atom ftyp @ 0 of size: 32, ends @ 32
Atom moov @ 32 of size: 357961, ends @ 357993
...
Atom free @ 357993 of size: 8, ends @ 358001
Atom mdat @ 358001 of size: 212741950, ends @ 213099951

File structure can be checked with utilityAtomicParsley

AtomicParsley file.mp4 -T 1

If the file structure does not match the requiremets, this file will not be played. Wrong file structure can be fixed if necessary with ffmpeg without
reencoding

ffmpeg -i bad.mp4 -acodec copy -vcodec copy -movflags +faststart good.mp4

File name requirements

Official AWS S3 does not recommend to use spaces along another special characters, but does not prohibits them. If the file name documentation
contains spaces, they should be replaced by '%20', for example

vod://s3/bucket/sample%20with%20spaces.mp4

VOD capture management with REST API
REST query should be HTTP/HTTPS POST request as:

HTTP:http://test.flashphoner.com:8081/rest-api/vod/startup
HTTPS:https://test.flashphoner.com:8444/rest-api/vod/startup

Where:

test.flashphoner.com - WCS server address
8081 - standard REST / HTTP port
8444 - standard HTTPS port
rest-api - mandatory part of URL
/vod/startup - REST method used

REST queries and responses

REST
query

REST query example REST response example Response
states

Description

/vod
/startup {

 "uri":"vod-
live://sample.mp4",
 "localStreamName":
"test"
}

409 - Conflict

500 - Internal
error

Capture VOD
stream from file

http://atomicparsley.sourceforge.net/
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingMetadata.html
http://test.flashphoner.com:8081/rest-api/vod/startup
https://test.flashphoner.com:8444/rest-api/vod/startup
http://test.flashphoner.com

/vod/find
{
 "localStreamName":
"test"
}

[
 {
 "localMediaSessionId": "29ec3236-1093-
42bb-88d6-d4ac37af3ac0",
 "localStreamName": "test",
 "uri": "vod-live://sample.mp4",
 "status": "PROCESSED_LOCAL",
 "hasAudio": true,
 "hasVideo": true,
 "record": false,
 "loop": false
 }
]

200 – OK

404 – not found

Find VOD streams
by criteria

/vod
/find_all [

 {
 "localMediaSessionId": "29ec3236-1093-
42bb-88d6-d4ac37af3ac0",
 "localStreamName": "test",
 "uri": "vod-live://sample.mp4",
 "status": "PROCESSED_LOCAL",
 "hasAudio": true,
 "hasVideo": true,
 "record": false,
 "loop": false
 }
]

200 – OK

404 – not found

Find all VOD
streams

/vod
/terminate {

 "uri":"vod://sample.
mp4",
 "localStreamName":
"test"
}

200 - Stream is
stopped

404 - Stream
not found

Stop VOD stream

Parameters

Name Description Example

uri File name to capture vod://sample.mp4

localStreamName Stream name test

status Stream status PROCESSED_LOCAL

localMediaSessionId Mediasession Id 29ec3236-1093-42bb-88d6-d4ac37af3ac0

hasAudio Stream has audio true

hasVideo Stream has video true

record Stream is recording false

loop VOD is looped false

VOD looping on demand

Since build it is possible to enable VOD looping while creating VOD live translation via REST API5.2.1528

https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.1528.tar.gz

{
 "uri":"vod-live://sample.mp4",
 "localStreamName": "test",
 "loop": true
}

By default, if parameter is not set, is applied. If the parameter is set, its value is applied as followsloop vod_live_loop

true - file will be looped
false - file will be played once, then VOD live translation will stop

The parameter has a precedence over value.loop vod_live_loop

Known limits

/rest-api/vod/startup query can be used for VOD live translations creation only. However, `find_all `and queries can be applied find, terminate
both to VOD and VOD live translations.

VOD stream publishing timeout after all subscribers gone off
By default, VOD stream stays published on server during 30 seconds after last subscriber gone off, if file duration exceeds this interval. This timeout can
be changed with the following parameter

vod_stream_timeout=60000

In this case, VOD stream stays published during 60 seconds.

Known issues
1. AAC frames of type 0 are not supported by ffmpeg decoder and will be ignored while stream pulled playback

Symptoms: warnings in the :client log

10:13:06,815 WARN AAC - AudioProcessor-c6c22de8-a129-43b2-bf67-1f433a814ba9 Dropping AAC frame that starts with
0, 119056e500

Solution:switch to FDK AAC decoder

use_fdk_aac=true

2. Files with B-frames can be played unsmoothly, with artifacts and freezes

Symptoms: periodic freezes and artifacts while playing VOD file, warnongs in the client log

09:32:31,238 WARN 4BitstreamNormalizer - RTMP-pool-10-thread-5 It is B-frame!

Solution: reencode this file to exclude B-frames, for example

ffmpeg -i bad.mp4 -preset ultrafast -acodec copy -vcodec h264 -g 24 -bf 0 good.mp4

3. When VOD is captured from a long-duration file, or a number of VOD streams are captured simultaneously, server process can terminate with Out of
memory

Symptoms: server process terminates; "Map failed" in and in error*.logserver log

https://docs.flashphoner.com/display/WCS5EN/WCS+Core+logs
https://docs.flashphoner.com/display/WCS5EN/WCS+Core+logs#WCSCorelogs-Serverlogs

19:30:53,277 ERROR DefaultMp4SampleList - Thread-34 java.io.IOException: Map failed
 at sun.nio.ch.FileChannelImpl.map(FileChannelImpl.java:940)
 at com.googlecode.mp4parser.FileDataSourceImpl.map(FileDataSourceImpl.java:62)
 at com.googlecode.mp4parser.BasicContainer.getByteBuffer(BasicContainer.java:223)
 at com.googlecode.mp4parser.authoring.samples.DefaultMp4SampleList$SampleImpl.asByteBuffer
(DefaultMp4SampleList.java:204)
 at com.flashphoner.media.F.A.A.A$1.A(Unknown Source)
 at com.flashphoner.media.M.B.C.D(Unknown Source)
 at com.flashphoner.server.C.A.B.A(Unknown Source)
 at com.flashphoner.server.C.A.B.C(Unknown Source)
 at java.lang.Thread.run(Thread.java:748)
Caused by: java.lang.OutOfMemoryError: Map failed
 at sun.nio.ch.FileChannelImpl.map0(Native Method)
 at sun.nio.ch.FileChannelImpl.map(FileChannelImpl.java:937)
 ... 8 more

Event: 1743.157 Thread 0x00007fc480375000 Exception <a 'java/lang/OutOfMemoryError': Map failed>
(0x00000000a1d750b0) thrown at [/HUDSON/workspace/8-2-build-linux-amd64/jdk8u161/10277/hotspot/src/share/vm
/prims/jni.cpp, line 735]

Solution:

1. Increase maximum number of regions of virtual memory

sysctl -w vm.max_map_count=262144

and virtual memory amount allocated to server process by changing in /usr/local/FlashphonerWebCallServer/bin/webcallserver file the string

ulimit -n 20000

to the strings

ulimit -n 20000
ulimit -v 1000000000

2. Starting from build 5.2.57, set the following parameter

vod_mp4_container_isoparser_heap_datasource=true

	Capturing VOD from a file

