
Stream recording

Overview
Quick manual on testing

Stream recording
Configuration

Server side
Turning stream recording on and off
MP4, WebM, MKV containers support
Recording to MPEG-TS container

Known limits
Forming the name of the stream record file
Record files rotation
Recording start time, end time and duration time calculation
Record files handling script
Directory for saving recorded files
Adjusting record audio sample rate
moov atom placement configuration in recording metadata
Audio track bitrate configuration for FDK AAC codec
Audio channels configuration
Recording perfomance tuning under high load
VP8 streams recording to webm container
A separate folder for temporary files
Minimal available disk space checking
Recording stopping on errors

Client side
Stream recording on demand

REST methods and response statuses
Parameters

How to get recording file name
How to play or download recording file

Downloading and playing a certain part of a recording file
Fragments folder configuration
Known limits

REST hook for stream recording
Multiple stream recording to one file with subsequent mixing

Codecs support
Multirecorder REST API

REST methods and responses
Parametes

Container configuration
Recording file name
Multiple streams recording folder
Multiple streams mixing tool
Getting tracks information from multiple recording file
Pulling a separate streams from MKV container
Multiple recording file handling script
Multi-threaded encoding while mixing multiple stream recordings

Threads count to use for multi-threaded encoding
Stream name displaying in mixed multiple record

Characters decoding in stream name
Multiple recording data callback
Minimal available disk space checking for multiple recordings mixing
REST hook for multiple stream recording

Known issues

Overview
A media stream captured by WCS can be recorded during publishing.

Supported protocols:

WebRTC
RTMP
RTSP

Recording formats:

MP4 for H.264 + AAC codecs
WebM for VP8 + Vorbis codecs
TS for H.264 + ADTS
MKV (since WCS build)5.2.1190

Quick manual on testing

https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.1190.tar.gz

Stream recording

1. For this test we use the demo server at and the Stream Recording web applicationdemo.flashphoner.com

https://demo.flashphoner.com/client2/examples/demo/streaming/stream_recording/recording.html

2. Click the "Start" button. Capturing and publishing of the stream starts.

3. Click the "Stop" button. Broadcasting stops, and a link to play and download the recorded fragment appears.

http://demo.flashphoner.com
https://demo.flashphoner.com/client2/examples/demo/streaming/stream_recording/recording.html

Configuration

Server side

Turning stream recording on and off

By default, stream recording is turned on.
To turn recording off, add the following line to the config /usr/local/FlashphonerWebCallServer/conf/flashphoner.properties:

record_streams=false

Parameter

record_flash_published_streams=true

turns on recording for the streams published with Flash, RTMP encoder or republished from another RTMP server.

Parameter

record_rtsp_streams=true

turns on recording for the streams captured from RTSP IP cameras.

MP4, WebM, MKV containers support

By default, H264 streams are recorded to MP4 container and VP8 streams to WebM. Since WCS build , MKV contaner is supported which is a 5.2.1190
swiss army knife at codecs point.

The following parameter is used to set recording containers

record_formats=h264-mp4,vp8-webm

MKV recording can be enabled as follows

https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.1190.tar.gz

record_formats=h264-mkv,vp8-mkv

One of the codecs published may be recorded to MKV container (VP8 for example)

record_formats=h264-mp4,vp8-mkv

Note that audio only streams are always recorded to MP4 container (using AAC codec).

Recording to MPEG-TS container

Since build , H264 streams can also be recorded to TS container using the following parameter5.2.610

record_h264_to_ts=true

or since build 5.2.1190

record_formats=h264-ts,vp8-webm

The parameter has a priority above , i.e.record_h264_to_ts record_formats

record_formats=h264-mp4,vp8-mkv
record_h264_to_ts=true

makes H264 streams to be recorded to MPEG-TS.

Known limits

1. VLC before 3.0.8 can not play TS recordings.

2. TS recordings can not berewound while playing in VLC.

Forming the name of the stream record file

By default, the file name is formed by template specified with stream_record_policy_template parameter:

stream_record_policy_template=stream-{mediaSessionId}-{login}

The following elements can be used in template:

Element Description Maximum size

{streamName} Stream name

{duration} File duration, for MP4 recordings only

{startTime} Recording start time 20 characters

{endTime} Recording end time 20 characters

{startTimeMillis} Recording start time based on server clock 20 characters

{endTimeMillis} Recording end timebased on server clock 20 characters

{sessionId} Session ID in BASE64 encoding 60 characters

{mediaSessionId} Media session ID 36 characters

{login} Login 32 characters

{audioCodec} Audiocodec 4 characters

{videoCodec} Videocodec 4 characters

For example,

https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.610.tar.gz
https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.1190.tar.gz

stream_record_policy_template={streamName}

means that the file name will match the stream name. So, the stream published with ffmpeg

ffmpeg -re -i BigBuckBunny.mp4 -preset ultrafast -acodec aac -vcodec h264 -strict -2 -f flv rtmp://test1.
flashphoner.com:1935/live/stream_ffmpeg

will be written to file stream_ffmpeg.mp4.

File extension is set depending on stream parameters and container used: mp4 for H264+AAC and webm for VP8+opus.

When the file name matches the stream name, it may contain characters that are not allowed in file names, slash '/' for example. In that case, the file
name should be encoded using the parameter

encode_record_name=true,HEX

Then, the file name will be encoded with a hexadecimal number. The parameter

encode_record_name=true,BASE64

will encode the file name with BASE64 encoding.

Another way to escape invalid characters is to remove them usingexclude_record_name_characters parameter. By default

exclude_record_name_characters=/

For example, to remove colons, commas, periods and slashes set

exclude_record_name_characters=:.,/

Record files rotation

Stream records can be splitted to parts of a given duration using record_rotation parameter. For example, the setting

record_rotation=20

specifies a fragment duration as 10 seconds andsetting

record_rotation=10M

defines a fragment maximum volume as 10 megabytes.

If recording file name template contains {startTime} element, recording fragment start timestamp will be inserted into file name. If template contains
{endTime} element, recording fragment end timestamp will be inserted into file name. For example, if the following settings are used

record_rotation=20
stream_record_policy_template={streamName}-{startTime}-{endTime}

the stream recording fragments will be named as followstest

test-1553577643961-1553577663988_1.mp4
test-1553577663989-1553577683997_2.mp4
test-1553577683997-1553577701626_3.mp4
...

Recording fragments are numbered continuously from 1. For every new mediasession (even if stream is published with the same name) indexing starts
again, i.e. old fragments will be overwritten if static part of file name template is not unic (stream name only for example).

Indexing can be disabled if necessary with the following parameter

record_rotation_index_enabled=false

In this case recording fragments are not numbered and will be named exactly as template sets. If template does not provide unic names, old fragments
may be overwritten.

Recording start time, end time and duration time calculation

Since build , recording start time, end time and duration time are calculated by stream frames time stamps. note that RTMP stream timestamps 5.2.458
are always starting from 0, but WebRTC publisher usually sets full time stamp by its own clock for ever frame.

stream_record_policy_template={streamName}-{startTime}-{endTime}-{duration}

Since build it is possible to use start time and end time based on server clock5.2.635

stream_record_policy_template={streamName}-{startTimeMillis}-{endTimeMillis}

In general, stream time stamps are different from server clock time stamps.

To calculate recording times more precisely, audio data should be buffered to keep synchronization. To do this, the following parameter is added

record_audio_buffer_max_size=100

By default, audio buffer size is set to 100 packets.

Record files handling script

The on_record_hook_script setting points to the shell script that is invoked when stream recording finishes.

The script is placed to the /usr/local/FlashphonerWebCallServer/bin folder by default:

on_record_hook_script=/usr/local/FlashphonerWebCallServer/bin/on_record_hook.sh

but it can be placed to any folder with any name, for example:

on_record_hook_script=/opt/on_record.sh

This script can be used to copy or move the stream record from the WCS_HOME/records directory to another location after recording completes.

Example:

STREAM_NAME=$1
SRC_FILE=$2
SRC_DIR="/usr/local/FlashphonerWebCallServer/records/"
REPLACE_STR="/var/www/html/stream_records/$STREAM_NAME-"
DST_FILE="${SRC_FILE/$SRC_DIR/$REPLACE_STR}"
sudo cp $SRC_FILE $DST_FILE

Here

$1 - stream name
$2 - absolute path and file name of the stream record
when stream recording ends, the record file is copied to /var/www/html/stream_records/

It is necessary to take into account the length of the absolute file name (including folder path) that will be formed when copying record file. If the absolute
name of the target file exceeds 255 characters limit, copy command will fail with error, so the handling script will not work as expected.

Since build5.2.801,WCS is running from 'flashphoner' user for security reasons. Therefore, if recording files are moved to other folder, it is necessary to
allow writing to the folder.For example, if files are copied to/opt/mediafolder

https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.458.tar.gz
https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.635.tar.gz
https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.801.tar.gz

STREAM_NAME=$1
FILE_NAME=$2

echo $STREAM_NAME:$FILE_NAME >> /usr/local/FlashphonerWebCallServer/logs/record.log
cp $FILE_NAME /opt/media

writing permissions must be granted to this folder

sudo chmod o+w /opt/media

Directory for saving recorded files

By default, stream records are saved to folder WCS_HOME/records. Starting from build , the folder for saving records can be changed using the 5.2.687
following parameter

record_dir=/usr/local/FlashphonerWebCallServer/records

If this parameter defines a non-default folder, files can not be downloaded in Stream Recording example. In this case, it is recommended to deploy a
separate web server for recording files downloading from a custom folder.

Since build5.2.801,WCS is running from 'flashphoner' user for security reasons. Therefore, when this parameter is changing, write permissions must be
granted to the folder as described above.

Adjusting record audio sample rate

By default, audio track is recorded with sample rate 44.1 kHz. This value can be changed using the following parameter if necessary

record_audio_codec_sample_rate=48000

In this case, record audio sample rate will be set to 48 kHz.

moov atom placement configuration in recording metadata

To play a recording file while downloading (progressive downloading), atom must be placed before atom in recording metadata. To do this, moov mdat
the following default setting is added in latest builds

mp4_container_moov_first=true

The place for atom can be reserved when recording file is created to optimize disk operations while saving the file. This feature can be enabled with moov
the following parameter

mp4_container_moov_first_reserve_space=true

A space size to reserve should be set in kilobytes with the following parameter

mp4_container_moov_reserved_space_size=2048

By default, 2048 kilobytes will be reserved. Therefore, a recording file size will not be less than reserved space if atom reservation is enabled, this moov
must be taken into account while setting up record rotation by size.

Audio track bitrate configuration for FDK AAC codec

Since , the ability is added to set for recording with FDK AAC codec. By default, mode 5 is set (VBR 112 kbps). This 5.2.428 audio track bitrate mode
value can be changed with the following parameter

record_fdk_aac_bitrate_mode=5

The following bitrate modes are possible:

0 - CBR

https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.687.tar.gz
https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.801.tar.gz
https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.428.tar.gz
http://wiki.hydrogenaud.io/index.php?title=Fraunhofer_FDK_AAC#Bitrate_Modes

1-5 - VBR

Note that recording files playback by file timestamps using nginx module is possible for VBR recordings only.ngx_http_mp4_module

Audio channels configuration

Since build , it is possible to set audio channels count for recordings using the following parameter5.2.610

record_audio_codec_channels=2

By default, audio channels count set to 2 (stereo). To record stream with monophonic audio, the following should be set

record_audio_codec_channels=1

Recording perfomance tuning under high load

Recording files writing to disk may take a much time when a number of published streams are recorded simultaneously. To speed up writing, it is
possible since build to set CPU threads number to work with stream recording using the following parameter5.2.639

file_recorder_thread_pool_max_size=4

By default, 4 threads are used to work with stream recording. This number can be increased if necessary. Note that it is not recommended to set
recording threads number more than CPUs number on the server.

VP8 streams recording to webm container

Since build java implementatiion is used to record VP8 streams to webm container5.2.905

webm_java_writer_enable=true

A cluster duration (in milliseconds) and size (in bytes) limits settings are available for this implementation. A stream data will be flushed to a recording file
when one of the limits is reached

webm_cluster_duration_limit=100000
webm_cluster_size_limit=131072

If some issues occur, the native code recorder implementation based on ffmpeg may be enabled

webm_java_writer_enable=false

A separate folder for temporary files

While recording a stream, media data are written to a temporary file, then this file is copying to a recording file named according to template. Since build5.
, it is possible to set a separate folder for temporary files using the following parameter2.963

record_tmp_dir=/tmp

This allows, for example, to place temporary files to RAM drive to speed up recording process.

The folder to place temporary files must be writable by WCS process, so permissions must be set to flashphoner user. For example, if the temporary files
folder is set to

record_tmp_dir=/opt/wcs

then permissions must be set to flashphoner

sudo chown -R flashphoner:flashphoner /opt/wcs

By default, all the temporary files are placed to /usr/local/FlashphonerWebCallServer/records folder.

https://nginx.org/en/docs/http/ngx_http_mp4_module.html
https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.610.tar.gz
https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.639.tar.gz
https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.905.tar.gz
https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.963.tar.gz
https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.963.tar.gz

Minimal available disk space checking

Since build a minimal available disk space is checked when recording a stream. If the space available is less then a limit, the recording will stop, 5.2.1209
or will not be started. In this case, the following message will be written to server log

Not enough available disk space

The space limit is set by the following parameter (1 G by default)

file_recorder_min_space=1g

It is possible to set the limit value in gigabytes (suffix) or in megabytes (suffix), for exampleg m

file_recorder_min_space=1024m

Note that if the recording was stopped due to space limit, a post processing script still will be launched for the recording file.

Recording stopping on errors

Since build the parameters were added to define an errors handling while recording a stream. By default, stream recording will be stopped if 3 5.2.1236
errors occur during 60 minutes:

file_recorder_error_interval=60
file_recorder_max_errors_per_interval=3

The frame which raise an exception and subsequent frames will not be recorded until keyframe is received and parsed successfully.

Client side

If stream recording is enabled on the server, whether the stream is recorded or not is determined by the value of record parameter passed into the
createStream function in the script of the publisher client:

true - the stream published by this client is recorded;
false - the stream is not recorded.

For instance, the script of the Stream Recording application recording.html, recording.js, contains the following code:

function publishStream(session) {
 var streamName = $('#url').val().split('/')[3];
 session.createStream({
 name: streamName,
 display: localVideo,
 record: true,
 receiveVideo: false,
 receiveAudio: false
 ...
 }).publish();
}

Stream recording on demand
Sometimes, it is necessary to record the stream that already exists on server, mixer output stream for example. This can be done with REST API. Note
that only streams in"PUBLISHING" state can be recorded.

REST query must be HTTP/HTTPS POST query like this:

HTTP:http://streaming.flashphoner.com:8081/rest-api/recorder/startup
HTTPS:https://streaming.flashphoner.com:8444/rest-api/recorder/startup

Where:

streaming.flashphoner.comis WCS server address
8081 is a standard WCS REST / HTTP port
8444is a standard WCS REST / HTTPS port

https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.1209.tar.gz
https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.1236.tar.gz

rest-apiis mandatory prefix
/recorder/startupis REST method

REST methods and response statuses

REST
method

Example of REST query Example of REST response Response
statuses

Description

/stream
/startRecordi
ng,

/recorder
/startup

{
 "mediaSessionId": "5a072377-
73c1-4caf-abd3",
 "config": {
 "fileTemplate":
"{streamName}-{startTime}-
{endTime}",
 "rotation": "20M"
 }
}

404 - Not
found

500 -
Internal error

Start stream recording in
specified mediasession

/stream
/stopRecordi
ng,

/recorder
/terminate

{
 "mediaSessionId": "5a072377-
73c1-4caf-abd3"
}

404 - Not
found

500 -
Internal error

Stop stream recording in
specified mediasession

/recorder
/find_all [

 {
 "fileName": "9c3e-test-
1563776083752-{endTime}.mp4",
 "mediaSessionId":
"5a072377-73c1-4caf-abd3"
 }
]

404 - Not
found

500 -
Internal error

Find session recordings

Parameters

Parameter name Description Example

mediaSessionId Media session identificator 5a072377-73c1-4caf-abd3

config Record settings that redefine server settings

fileTemplate Recording file name template {streamName}-{startTime}-{endTime}

rotation Enables/disables rotation and duration/volume of fragments 20M

Recording on demand works as follows:

When REST API query is called, current recording will be stopped./recorder/startup
New recording starts with settings passed in REST query.
If some setting is not defined in REST query, the server setting will be applied.

For example if recording should have exact file name with rotation disabled, the following query should be passed:

/stream/startRecording
{
 "mediaSessionId":"1234567890abcdefgh",
 "config": {
 "fileTemplate": "test",
 "rotation": "disabled"
 }
}

REST query /recorder/find_all returns session recordings list. The list shows both recordings on demand started via REST API and recordings initiated
with WebSDK:

[
 {
 "fileName": "003f-1563776713987-{endTime}.mp4",
 "mediaSessionId": "5af9c820-ac49-11e9-9f06-693cb47c4042"
 },
 {
 "fileName": "stream-57882100-ac49-11e9-afdd-6752f5be57a9-jtdvnittjkrd8rsc3dnfbger2o.mp4",
 "mediaSessionId": "57882100-ac49-11e9-afdd-6752f5be57a9"
 }
]

How to get recording file name
There are the following ways to get recording name, for example, to download it:

1. on server receives the recording file name right after it recordedRecord files handling script

2. If it is necessary to know recording name in browser, should be formed from parameters which can be obtained by REST API, for file name template
example

stream_record_policy_template={streamName}-{mediaSessionId}

3. When WebSDK is used, recording name can be obtained with getRecordInfo() function

 ...
 }).on(STREAM_STATUS.UNPUBLISHED, function (stream) {
 setStatus(stream.status());
 showDownloadLink(stream.getRecordInfo());
 onStopped();
 })
 ...

Note that STREAM_STATUS.UNPUBLISHED may be received considerable time after stopping a stream if recording file is big. Since build this 5.2.673
time may be limited using the following parameter (15 seconds by default)

record_stop_timeout=15

How to play or download recording file
The recording file is available via WCS internal web server using the following link

https://test.flashphoner.com:8444/client/records/stream.mp4

Where

test.flashphoner.com - WCS server URL
stream.mp4 - recording file name

By default, WCS returns HTTP header

Content-Disposition: inline;filename="stream.mp4"

in this case, browser tries to play the file. This behaviour is enabled with the following parameter

record_response_content_disposition_header_value=inline

https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.673.tar.gz

To make a browser to download the recording file without playing it, the following parameter should be set

record_response_content_disposition_header_value=attachment

Downloading and playing a certain part of a recording file

Since build it is possible to download and play a certain part of a recording file. To do this, request the file with start time and end time in seconds5.2.894

https://test.flashphoner.com:8444/client/records/stream.mp4?start=11&end=60

Only start time or only end time can be used.

The fragments requested are stored to the same folder where recording files are placed. Timestamps will be added to the fragment name, for example

stream-s11-e60.mp4

Such files are not removed after downloading: if the same fragment is requested again, server will send the existing file.

Since build partial download and playback is supported for audio only recordings too.5.2.899

Fragments folder configuration

By default, fragments are written to the folder

/usr/local/FlashphonerWebCallServer/records

(the same folder as recording files).

Since build it is possible to set a separate folder to store fragments using the following parameter5.2.957

mp4_cutter_dir=/tmp

Known limits

1. A partial download and playback is supported for MP4 container only. If webm file is requested, it will be always fully downloaded and played.

2. Playback can start slightly earlier if start time is set, depending on closest key frame in the recording file.

REST hook for stream recording
Since build it is possible to receive an events about a certain stream recording starting or stopping. WCS sends to a backend server the REST 5.2.1416
hook /StreamEvent

URL:http://localhost:8081/apps/EchoApp/StreamEvent
OBJECT:
{
 "nodeId" : "d2hxbqNPE04vGeZ51NPhDuId6k3hUrBB@192.168.1.39",
 "appKey" : "defaultApp",
 "sessionId" : "/192.168.1.83:49977/192.168.1.39:8443-591009c4-e051-4722-b34d-71cf2ade3bed",
 "mediaSessionId" : "15de2290-4089-11ed-88fe-d78a87cf3386",
 "type" : "startedRecording",
 "payload" : {
 "fileName" : "stream-15de2290-4089-11ed-88fe-d78a87cf3386-8mv1of1o4fni58k0qdomu52kru.mp4"
 }
}

when stream recording is started and

https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.894.tar.gz
https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.899.tar.gz
https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.957.tar.gz
https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.1416.tar.gz

URL:http://localhost:8081/apps/EchoApp/StreamEvent
OBJECT:
{
 "nodeId" : "d2hxbqNPE04vGeZ51NPhDuId6k3hUrBB@192.168.1.39",
 "appKey" : "defaultApp",
 "sessionId" : "/192.168.1.83:49977/192.168.1.39:8443-591009c4-e051-4722-b34d-71cf2ade3bed",
 "mediaSessionId" : "15de2290-4089-11ed-88fe-d78a87cf3386",
 "type" : "stoppedRecording",
 "payload" : {
 "fileName" : "stream-15de2290-4089-11ed-88fe-d78a87cf3386-8mv1of1o4fni58k0qdomu52kru.mp4"
 }
}

when stream recording is stopped.

The method must be to a when updating WCS from previous buildsStreamEvent added backend application configuration

add app-rest-method defaultApp StreamEvent
add app-rest-method MyAppKey StreamEvent

Multiple stream recording to one file with subsequent mixing
Since build it is possible to record multiple streams to one file. Then streams can be extracted from this file and mixed by a special tool. Multiple 5.2.1012
streams can be recorded only toMP4 container or, since build , to MKV container. This feature is intended, for example, to record a video 5.2.1440
conference. In this case, unlike to , stream mixing works while recording file is post-processed, this allows to aquire a less of server resources MCU mixer
during the conference itself.

Multiple stream recording is managed by REST API.

Codecs support

MP4 container:

H264
AAC

MKV container:

H264
VP8
Opus
AAC
PCMA
PCMU
G722

Multirecorder REST API

REST query must be HTTP/HTTPS POST query like this:

HTTP:http://streaming.flashphoner.com:8081/rest-api/multipleRecorder/startup
HTTPS:https://streaming.flashphoner.com:8444/rest-api/multipleRecorder/startup

Where:

streaming.flashphoner.comis WCS server address
8081 is a standard WCS REST / HTTP port
8444is a standard WCS REST / HTTPS port
rest-apiis mandatory prefix
/multipleRecorder/startupis REST method

REST methods and responses

REST query Example of REST query Example of REST response Response
states

Description

https://docs.flashphoner.com/display/WCS52EN/Applications+management
https://docs.flashphoner.com/display/WCS52EN/Controlling+REST+methods
https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.1012.tar.gz
https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.1440.tar.gz
https://docs.flashphoner.com/display/WCS52EN/Real-time+stream+mixer+with+MCU+functions

/multipleRecord
er/startup {

 "uri": "multi-recorder://test-
record"
}

409 - Conflict

500 -
Internal error

Launch multiple streams
recorder

/multipleRecord
er/add {

 "uri": "multi-recorder://test-
record",
 "mediaSessionId": "866a9910-
fbfe-11eb-aae4-6f99b0c80a3a"
}

404 - Not
found

409 - Conflict

500 -
Internal error

Add the stream with
mediaSessionId to the
recorder

/multipleRecord
er/find_all [

 {
 "mediaSessionsId": [
 "866a9910-fbfe-11eb-
aae4-6f99b0c80a3a",
 "9f1e2530-fbfe-11eb-
9ec1-77172ac14d86",
 "a970d0a0-fbfe-11eb-
8fcc-912807bab442"
],
 "uri": "multi-
recorder://test-record",
 "fileName": "multi-
recorder___test-record.mp4"
 }
]

404 - Not
found

500 -
Internal error

Find all recorders

/multipleRecord
er/remove {

 "uri": "multi-recorder://test-
record",
 "mediaSessionId": "866a9910-
fbfe-11eb-aae4-6f99b0c80a3a"
}

404 - Not
found

500 -
Internal error

Remove stream with
mediaSessionId from
recorder

/multipleRecord
er/terminate {

 "uri": "multi-recorder://test-
record"
}

404 - Not
found

500 -
Internal error

Stop multiple streams
recorder

Parametes

Parameter name Description Example

uri Recorder URI multi-recorder://test-record

mediaSessionId Stream mediasession Id 866a9910-fbfe-11eb-aae4-6f99b0c80a3a

filename Recording file name multi-recorder___test-record.mp4

Container configuration

The feature is available since build By default, multiple recordings are stored to MP4 container . 5.2.1440

multi_recorder_type=MP4

https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.1440.tar.gz

MKV container may be used if necessary (for example, if VP8+Opus streams are published in conference)

multi_recorder_type=MKV

Recording file name

Multiple streams recording file name is formed by . In this case:template

1.{streamName} parameter is set according to recorder URI, replacing all the characters not allowed to use in file system to underline.

2. {startTime}, {endTime} parameters cannot be set because they depend on stream timestamps, and we have a multiple streams with a different
timestamps simultaneously. So it is recommended to use {startTimeMillis},{endTimeMillis} parameters to add servers clock timestamps to file name.

For example, with the following template

stream_record_policy_template={streamName}-{startTime}-{startTimeMillis}-{endTime}-{endTimeMillis}

the file name for recorder with URI

"uri": "multi-recorder://test-record"

will look as follows:

multi-recorder___test-record--1-1628821032180--1-1628821151750.mp4

Here {startTime},{endTime} are replaced by -1.

Multiple streams recording folder

By default, multiple streams recording files are stored in WCS_HOME/records forlder. Since build , multiple streams recording folder can be set 5.2.1088
using the following parameter

multi_record_dir=/usr/local/FlashphonerWebCallServer/records

This folder should be writalble, For example, if the folder is set to

multi_record_dir=/opt/media

the folder access privilegies sholud be set as

sudo chmod o+w /opt/media

Multiple streams mixing tool

Only one stream can be played by default from multiple streams recording file. The streams should be mixed to view them all. The OfflineMP4Mixer tool
should be used to mix, launching as follows:

cd /usr/local/FlashphonerWebCallServer/tools
./offline_mixer_tool.sh multi-recorder___test-record--1-1628821032180--1-1628821151750.mp4

Offline mixer settings should be defined in /usr/local/FlashphonerWebCallServer/conf/offline_mixer.json file. By default, the following settings are used:

{
 "hasVideo": "true",
 "hasAudio": "true",
 "mixerDisplayStreamName": true
}

https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.1088.tar.gz

A mixed file is placed to the same folder as original one, with _mixed suffix addition, for example

multi-recorder___test-record--1-1628821032180--1-1628821151750_mixed.mp4

A picture sample from the mixed file

Since build , a streams can be mixed both from MP4 and MKV containers. The mixed stream is always recording to MP4 container.5.2.1481

Getting tracks information from multiple recording file

Since build tracks information from multiple recording file may be extracted using multiple stream mixing tool. To do this, the tool should be 5.2.1049
launched as follows:

./offline_mixer_tool.sh --show-tracks-info ../records/multi-recorder___test-record.mp4

In this case, the tool will print tracks information in JSON form. See two participants room recording information example below:

 Two participants track information example

[
 {
 "durationInMS": "37282",
 "trackEdits": [
 {
 "endInMs": "14",
 "type": "pause",
 "startInMs": "0"
 },
 {
 "endInMs": "37282",
 "type": "media",
 "startInMs": "14"
 }
],
 "channels": "2",
 "trackType": "AUDIO",
 "trackId": "1",
 "timescale": "44100",

https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.1481.tar.gz
https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.1049.tar.gz

 "streamName": "room-09f012-user1-e6ff",
 "trackCodec": "mp4a",
 "sampleRate": "44100",
 "mediaSessionId": "e6ff54e0-1c2a-11ec-90e8-79a2a32f3d9d"
 },
 {
 "durationInMS": "37336",
 "trackEdits": [
 {
 "endInMs": "37336",
 "type": "media",
 "startInMs": "0"
 }
],
 "trackType": "VIDEO",
 "trackId": "0",
 "width": "320",
 "timescale": "90000",
 "streamName": "room-09f012-user1-e6ff",
 "trackCodec": "avc1",
 "mediaSessionId": "e6ff54e0-1c2a-11ec-90e8-79a2a32f3d9d",
 "height": "240"
 },
 {
 "durationInMS": "39274",
 "trackEdits": [
 {
 "endInMs": "100",
 "type": "pause",
 "startInMs": "0"
 },
 {
 "endInMs": "21534",
 "type": "pause",
 "startInMs": "100"
 },
 {
 "endInMs": "39274",
 "type": "media",
 "startInMs": "21534"
 }
],
 "channels": "2",
 "trackType": "AUDIO",
 "trackId": "3",
 "timescale": "44100",
 "streamName": "room-09f012-user2-f746",
 "trackCodec": "mp4a",
 "sampleRate": "44100",
 "mediaSessionId": "f74633a1-1c2a-11ec-bba5-af8cf43275a8"
 },
 {
 "durationInMS": "39303",
 "trackEdits": [
 {
 "endInMs": "21434",
 "type": "pause",
 "startInMs": "0"
 },
 {
 "endInMs": "39303",
 "type": "media",
 "startInMs": "21434"
 }
],
 "trackType": "VIDEO",
 "trackId": "2",
 "width": "320",
 "timescale": "90000",
 "streamName": "room-09f012-user2-f746",
 "trackCodec": "avc1",

 "mediaSessionId": "f74633a1-1c2a-11ec-bba5-af8cf43275a8",
 "height": "240"
 }
]

Where:

durationInMS - track duration in milliseconds
trackType - track type: AUDIO or VIDEO
trackId - track Id
streamName - stream name containing this track
mediaSessionId - stream media session Id
timescale - track samples per second quantity
trackCodec - track codec
width, height - video track picture size by first key frame
channels - audio track channels count
sampleRate - audio track sample rate (usually equal to timescale parameter)
trackEdits - track timeline description

Track timeline is described as a set of segments according to MP4 'edit lists` atom content, with the following parameters:

startInMs - segment start time in milliseconds relative to file beginning
endInMs - segment end time in milliseconds relative to file beginning
type - segment type: mediadata (media) or pause (pause)

Any single track may be extracted from multiple recording file using ffmpeg or other MP4 editing tool.

Note that if a stream with the same name was added to multiple recorder, then removed from recorder and then added again, this stream will be
repersented in the file as different tracks with subsequent track Ids, for example:

 Re-added stream track information example example

[
 {
 "durationInMS": "78978",
 "trackEdits": [
 {
 "endInMs": "63050",
 "type": "pause",
 "startInMs": "0"
 },
 {
 "endInMs": "78978",
 "type": "media",
 "startInMs": "63050"
 }
],
 "channels": "2",
 "trackType": "AUDIO",
 "trackId": "3",
 "timescale": "44100",
 "streamName": "test",
 "trackCodec": "mp4a",
 "sampleRate": "44100",
 "mediaSessionId": "fbbf5b50-20ee-11ec-bf06-ef6ec6048b2c"
 },
 {
 "durationInMS": "39708",
 "trackEdits": [
 {
 "endInMs": "23150",
 "type": "media",
 "startInMs": "0"
 }
],
 "channels": "2",
 "trackType": "AUDIO",
 "trackId": "1",
 "timescale": "44100",
 "streamName": "test",
 "trackCodec": "mp4a",
 "sampleRate": "44100",

 "mediaSessionId": "c7bc1460-20ee-11ec-bf06-ef6ec6048b2c"
 },
 {
 "durationInMS": "39791",
 "trackEdits": [
 {
 "endInMs": "23233",
 "type": "media",
 "startInMs": "0"
 }
],
 "trackType": "VIDEO",
 "trackId": "0",
 "width": "640",
 "timescale": "90000",
 "streamName": "test",
 "trackCodec": "avc1",
 "mediaSessionId": "c7bc1460-20ee-11ec-bf06-ef6ec6048b2c",
 "height": "360"
 },
 {
 "durationInMS": "63050",
 "trackEdits": [
 {
 "endInMs": "39791",
 "type": "pause",
 "startInMs": "0"
 },
 {
 "endInMs": "50191",
 "type": "media",
 "startInMs": "39791"
 }
],
 "trackType": "VIDEO",
 "trackId": "2",
 "width": "640",
 "timescale": "90000",
 "streamName": "test",
 "trackCodec": "avc1",
 "mediaSessionId": "ed3ebda0-20ee-11ec-bf06-ef6ec6048b2c",
 "height": "360"
 }
]

Pulling a separate streams from MKV container

Since build a separate streams can be pulled from MKV container using multiple stream mixing tool:5.2.1440

./offline_mixer_tool.sh --pull-streams ../records/multi-recorder___test-record.mkv

In this case, MKV files will be created per each stream in multirecording:

multi-recorder___test-record_fbbf5b50-20ee-11ec-bf06-ef6ec6048b2c.mkv
multi-recorder___test-record_c7bc1460-20ee-11ec-bf06-ef6ec6048b2c.mkv
multi-recorder___test-record_ed3ebda0-20ee-11ec-bf06-ef6ec6048b2c.mkv

If a stream was removed from multirecorder and when added again, or was added a much later then other streams, the gaps will be filled by default to
equalize all the pulled streams. This can be disabled if necessary

multi_recorder_mkv_fill_gaps=false

Multiple recording file handling script

https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.1440.tar.gz

When multiple stream recording is finished, a specila handling script is automatically launched as set by the following parameter

on_multiple_record_hook_script=on_multiple_record_hook.sh

By default, script will launch offline_mixer_tool.sh, passing multiple streams recording file name to it.

Since build , on_multiple_record_hook.sh script writes only file mixing result to log file /usr/local/FlashphonerWebCallServer/logs/multi-record.5.2.1023
log, to decrease hard disk I/O load while offline mixing tool is working. A detailed logging mat=y be enabled if necessary by setting the following variable
in the script

LOGGER_ENABLED=true

Multi-threaded encoding while mixing multiple stream recordings

Since build multi-threaded encoding can be enabled while mixing multiple stream recordings. To enable this feature, add the following 5.2.1089
parameter to /usr/local/FlashphonerWebCallServer/conf/offline_mixer.json file

{
 ...,
 "multithreading": true
}

Multiple stream recordings are mixed a twice faster when multi-threaded encoding is enabled comparing to singe-threaded one.

Threads count to use for multi-threaded encoding

Since build threads count for multi-threaded encoding can be set up. By default, threads count is equal to a half of CPUs available. For 5.2.1523
example, on 12 vCPU server 6 threads will be used

{
 ...,
 "threadCount": 6
}

If mixing takes a long time, threads count may be increased, but it is not recommended to set it more than CPUs count, which can be detected by the
following command

lscpu | grep -E "^CPU\(s\)"

Stream name displaying in mixed multiple record

By default, every stream name is displayed in mixed multiple record. This may be disabled if necessary by the following setting in /usr/local
 file/FlashphonerWebCallServer/conf/offline_mixer.json

{
 ...,
 "mixerDisplayStreamName": false
}

When RoomApi conference streams are recorded, stream name includes a room name and a participant stream id, for example room-1882a6-bob-
. Since build 037c room name may be excluded by the following settings5.2.1642

{
 ...,
 "mixerDisplayStreamName": true,
 "mixerTextDisplayRoom": false,
 "labelReplaceRegex": "\\w+-\\w+-([^\\-]+)-\\w+",
 "labelReplaceWith":""
}

https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.1023.tar.gz
https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.1089.tar.gz
https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.1523.tar.gz
https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.1642.tar.gz

Where:

labelReplaceRegex - a regular expression to find items to be replaced in a stream name
labelReplaceWith - string to replace items found, empty string will exclude the items

In this case, for the example above, only participant name will be displayed.bob

Characters decoding in stream name

Since build a characters encoded at client side by may be decoded during mixing a multiple record5.2.1751 encodeURIComponent()

{
 ...,
 "mixerDecodeStreamName": true
}

In this case a decoded characters available in the font used will be displayed, or a similar characters.

Multiple recording data callback

Since build it is possible to send PORT query to a certain URL after multiple recording and mixing is finished. This allows to notify backend 5.2.1123
about file name to which chat room recording is mixed.

Callback URL should be set in /usr/local/FlashphonerWebCallServer/conf/offline_mixer.json file

{
 ...,
 "callbackUrl": "http://backend.url/multiRecorderCallback"
}

A recording data to send are passed via /usr/local/FlashphonerWebCallServer/bin/on_multiple_record_hook.sh script when launching offline_mixer_tool.
sh. Therefore, if WCS build is installed over a previous build, or if custom on_multiple_record_hook.sh is used, the script should be modified as 5.2.1123
follows:

https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.1751.tar.gz
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/encodeURIComponent
https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.1123.tar.gz
https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.1123.tar.gz

 on_multiple_record_hook.sh

This script copies a recorded stream to client/records
FILE_NAME=$1
CREATION_MODIFICATION_TIME=$2
DURATION_IN_MS=$3
RECORDER_URI=$4
WCS_HOME=/usr/local/FlashphonerWebCallServer
LOG_FILE=$WCS_HOME/logs/multi-record.log
MIXER_TOOL=$WCS_HOME/tools/offline_mixer_tool.sh
Set LOGGER_ENABLED to true to enable mixing debug logging
LOGGER_ENABLED=false

echo "[$(date '+%Y-%m-%d %H:%M:%S')] Start mixing multiple recording file $FILE_NAME" >> $LOG_FILE

if $LOGGER_ENABLED; then
 bash $MIXER_TOOL $FILE_NAME $CREATION_MODIFICATION_TIME $DURATION_IN_MS $RECORDER_URI >> $LOG_FILE 2>&1
else
 bash $MIXER_TOOL $FILE_NAME $CREATION_MODIFICATION_TIME $DURATION_IN_MS $RECORDER_URI > /dev/null 2>&1
fi

CODE=$?
if ["$CODE" -ne "0"]; then
 if ["$CODE" -eq "64"]; then
 echo "ERROR: File to mix not found" >> $LOG_FILE
 elif ["$CODE" -eq "65"]; then
 echo "ERROR: Offline mixer config not found" >> $LOG_FILE
 else
 echo "ERROR: Offline mixer tool error code: $CODE" >> $LOG_FILE
 fi
 exit $CODE
fi
echo "[$(date '+%Y-%m-%d %H:%M:%S')] Multiple recording file $FILE_NAME is mixed successfully" >> $LOG_FILE
exit 0

POST query contains a following JSON data:

POST /multiRecorderCallback HTTP/1.1
Content-Type: application/json
Content-Length: 463
Host: localhost
Connection: Keep-Alive
User-Agent: Apache-HttpClient/4.3.5 (java 1.5)
Accept-Encoding: gzip,deflate

{
 "multiRecorderCreationModificationTime":3724973476,
 "multiRecorderDurationInMS":44061,
 "multiRecorderFilePath":"/usr/local/FlashphonerWebCallServer/multirecords/stream-32c7edd7-37bf-4bf2-a58d-
955679c5287e-mockLogin.mp4",
 "recorderUri":"multi-recorder://room-bace1f",
 "mixerParams":
 [
 {
 "path":"/usr/local/FlashphonerWebCallServer/multirecords/stream-32c7edd7-37bf-4bf2-a58d-955679c5287e-
mockLogin_mixed.mp4",
 "durationInMs":44000,
 "creationModificationTime":3724973524
 }
]
}

Multiple recording file parameters:

multiRecorderCreationModificationTime - multiple recording file creation date and time
multiRecorderDurationInMS - multiple recording file duration in milliseconds
multiRecorderFilePath - multiple recording file path

recorderUri - multiple recording identifier, contains room name if RoomApi is used

Mixed file parameters:

path - mixed file path
durationInMs - mixed file duration in milliseconds
creationModificationTime - mixed file creation date and time

Minimal available disk space checking for multiple recordings mixing

Since build is enabled for multiple recordings mixing. The mixing will not start or will be stopped when 5.2.1317 minimal available disk space checking
disk space becomes less then defined threshold value. The threshold is set by the following parameter in /usr/local/FlashphonerWebCallServer

 file/conf/offline_mixer.json

{
 ...,
 "minAvailableSpace": "1G"
}

By default, disk space threshold is set to 1 Gb (same as for single stream recordings). If the treshold is reached while mixing is already working, the
mixing will be stopped with keeping data already written to destination file. The file can be correctly played after that.

REST hook for multiple stream recording

Since build it is possible to receive an events about a certain stream is added or removed to/from multiple recorder. WCS sends to a backend 5.2.1416
server the REST hook /StreamEvent

URL:http://localhost:8081/apps/EchoApp/StreamEvent
OBJECT:
{
 "nodeId" : "d2hxbqNPE04vGeZ51NPhDuId6k3hUrBB@192.168.1.39",
 "appKey" : "defaultApp",
 "sessionId" : "/192.168.1.83:49977/192.168.1.39:8443-591009c4-e051-4722-b34d-71cf2ade3bed",
 "mediaSessionId" : "15de2290-4089-11ed-88fe-d78a87cf3386",
 "type" : "addedToMultiRecording",
 "payload" : {
 "fileName" : "stream-0389ff08-7e45-4f00-a579-9d253319cba4-mockLogin.mp4",
 "uri" : "multi-recorder://test-record"
 }
}

when stream is added to a multiple recorder and

URL:http://localhost:8081/apps/EchoApp/StreamEvent
OBJECT:
{
 "nodeId" : "d2hxbqNPE04vGeZ51NPhDuId6k3hUrBB@192.168.1.39",
 "appKey" : "defaultApp",
 "sessionId" : "/192.168.1.83:49977/192.168.1.39:8443-591009c4-e051-4722-b34d-71cf2ade3bed",
 "mediaSessionId" : "15de2290-4089-11ed-88fe-d78a87cf3386",
 "type" : "removedFromMultiRecording",
 "payload" : {
 "fileName" : "stream-0389ff08-7e45-4f00-a579-9d253319cba4-mockLogin.mp4",
 "uri" : "multi-recorder://test-record"
 }
}

when stream is removed from multiple recorder.

The method must be to a when updating WCS from previous buildsStreamEvent added backend application configuration

add app-rest-method defaultApp StreamEvent
add app-rest-method MyAppKey StreamEvent

https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.1317.tar.gz
https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.1416.tar.gz
https://docs.flashphoner.com/display/WCS52EN/Applications+management
https://docs.flashphoner.com/display/WCS52EN/Controlling+REST+methods

Known issues
1. Maximum length of file name in all actual Linux file systems is limited to 255 characters. When record file is created, its name will be trimmed to this
limit including extension and part number if rotation is enabled.

2. When stream published in chat room is recorded, file rotation will be automatically disabled, otherwise record files will not be merged.

3. Creation time will be set to MP4 recording metadata only.

4. In Amazon WCS instance, record files hook script requires sudo to execute any file operation.

Symptoms: record hook script does not perform any operation on record files

Solution: in Amazon WCS instance use sudo to make any file operation or call external script from record hook script, for example

sudo cp $SRC_FILE $DST_FILE

5. CPU load may grow and simultaneous streams recording may delay to finish on low powered servers when two channels audio is recording

Symptoms: all the CPU cores are loaded to 100% while a number of streams are recording simultaneously, and the recordings are finished with a big
delay when streams stop.

Solution: disable two channels audio recording

record_audio_codec_channels=1

6. Stream is playing normally via WebRTC, but recording may be corrupted when publishing H264 stream from Android Firefox on some devices

Symptoms: recording file has a small size and cannot be played or picture seems corrupted when stream is published from Android Firefox

Solution:

a) use VP8 to publish stream from Android Firefox

b) use Chrome or other browser to publish stream from this device

7. Some Android devices may publish WebRTC H264 stream with High profile even if there is no such profile in SDP while establishing WebRTC
connection

Symptoms: High profile is displayed in MP4 recording file data

Solution: if there are any problems playing stream recording files with High profile, re-encode those files using ffmpeg for example, running it after
recording is finished by on_record_hook.sh script.

8. The first record after the server start may be corrupted if Java machine does not initialize all the necessary modules in time

Symptoms: a long freeze in the first recording file after server start

Solution:

a) update WCS to build 5.2.1105

b) if the build and newer is already used, make sure WebRTC stack modules pre-initilization on server startup is enabled5.2.1105

webrtc_pre_init=true

9. webm recording files cannot be played in iOS Safari

Symptoms: file download starts instead of playback when clicking webm recording file link

Solution: download recording file to device and play it in local player application

10. Recording file is not created when publishing RTMP audio only stream with default settings

Symptoms: audio only RTMP stream published to WCS is not recording

Solution: use without video trackSDP settings file flash_handler_publish.sdp

https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.1105.tar.gz
https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.1105.tar.gz
https://docs.flashphoner.com/display/WCS52EN/SDP+settings+files

v=0
o=- 1988962254 1988962254 IN IP4 0.0.0.0
c=IN IP4 0.0.0.0
t=0 0
a=sdplang:en
m=audio 0 RTP/AVP 97 8 0 102 103 104 105 106 107 108 109 110
a=rtpmap:97 SPEEX/16000
a=rtpmap:8 PCMA/8000
a=rtpmap:0 PCMU/8000
a=rtpmap:102 mpeg4-generic/48000/1
a=rtpmap:103 mpeg4-generic/44100/1
a=rtpmap:104 mpeg4-generic/32000/1
a=rtpmap:105 mpeg4-generic/24000/1
a=rtpmap:106 mpeg4-generic/22050/1
a=rtpmap:107 mpeg4-generic/16000/1
a=rtpmap:108 mpeg4-generic/12000/1
a=rtpmap:109 mpeg4-generic/11025/1
a=rtpmap:110 mpeg4-generic/8000/1
a=sendonly

11. Stream recording will start only when at least one key frame is received

Symptoms: recording file is not created when starting recording (via REST API for example), there are no errors in server logs, the stream is already
playing in browsers (until viewers reconnect)

Solution: provide periodic key frames sending for WebRTC streams with the following parameter

periodic_fir_request=true

for RTMP streams with appropriate encoder settings

12. VLC player skips gaps when playing a stream pulled from multirecording in MKV container

Symptoms: gaps in a pulled stream are skipped when playing it in VLC

Solution: use the following parameter

multi_recorder_mkv_fill_gaps=true

13. It is recommended to provide a regular keyframes sending when WebRTC stream is recording to singe MKV file and to MKV multirecorder
simultaneously

Symptoms: VLC jumps to time of stream addition to multirecorder when playing a single stream MKV recording

Solution: provide periodic key frames sending for WebRTC streams with the following parameter

periodic_fir_request=true

14. G722 audio can be a shortly distorted when pulling a stream file from MKV multirecording

Symptoms: If the stream with G722 audio was removed and then added again to the multirecorder, a short audio distortions can be heard when the
stream was added to multirecorder

Solution: use Opus audio codec

15. PCMA audio may finish earlier than video after stream removing from multirecorder when pulling a stream file from MKV multirecording

Symptoms: if the stream with PCMA audio was removed from multirecorder, audio finishes earlier than video when playing the pulled stream file

Solution: use Opus audio codec

	Stream recording

