Working with chat rooms

® QOverview
® Supported platforms and browsers
® Supported codecs
® Functions
® QOperation flowchart
Video conference
Video chat
Video conference with screen sharing
Call Flow
How to record streams published by room participants
® Stream records synchronization
® Streams recording test
® Merging synchronized stream records using ffmpeg

Overview

Web Call Server allows embedding of a video chat to your project, that will work on most of modern browsers without installing third-party software as
well as on mobile devices.

Supported platforms and browsers

Chrome Firefox Safari 11 Edge

Windows + + +
Mac OS + + +
Android + +
i0S - - +

Supported codecs
* \ideo: H.264, VP8
® Audio: Opus, G.711
Functions

® Video chat

® Text chat

® Video conference

* Video conference with screen sharing

Operation flowchart

Browser 1 - Participant 1 Browser 2 - Participant 2

1. Websocket / join 3. Flash /join

2. WebRTC WCS 4 RTMP

¥ 3
A 4

¥ 3
v

1. The browser of the participant 1 connects to the server via Websocket and sends the join command.

2. The browser of the participant 1 can send a stream via WebRTC to publish it in the chat room and receive streams published in the room.
3. The browser of the participant 2 connects to the server using Flash and sends the join command.

4. The browser of the participant 2 can send a stream via RTMP to publish it in the chat room and receive streams published in the room.

Video conference

1. For the test we use:

* the demo server at demo.flashphoner.com;
* theConferenceweb application to organize a video conference.

2. Open the Conference web application. In the "Login" field enter any arbitrary user name, for example test:

Conference

WCS URL wss /fp11.flashphoner.com:84.
Login test| Join
NONE NONE

3. Click the Join button. A connection with the server is established, and you should see the corresponding "ESTABLISHED" label. The chat room is
automatically created:

https://demo.flashphoner.com/client2/examples/demo/streaming/conference/conference.html

Conference

WCS URL wss:/fp11.flashphoner.com:84.
Login test Leave ESTABLISHED
NONE NONE

In the bottom of the screen, an image from the web camera, a text chat and a link to invite users to the room are shown:

PUBLISHING

Mute A | MuteV

Stop

10:29 chat - room is empty
10:30 test - test message

Send

Invite

https//p11_flashphoner.com:8888/client2/examples/demo/fstreaming/conference/conference.htmi?
roomName=room-72beda

4. Copy the link to the chat room and open it in a new tab of the browser. Enter a user name other than the name of the chat room creator, for example,
test2, and click the Join button. The page will display an image from the web camera of the test participant (left) and from the web camera of the test2
participant (below):

WCS URL

Login

Conference

wss:/ip11 flashphoner. com:8443

test2

fest

Leave

ESTABLISHED

NONE

5. In the text chat window of the test2 participant enter a message and click Send:

10:31 chat - participants: test
10:32 test2 - this is a test, do you see me?

PUBLISHING

Mute A Mute V

Stop

| Send ‘

6. On the browser tab of the test participant enter an answer:

PUBLISHING

Mute A Mute V

Stop

TU_LT CIEL - TOOIT 15 E1npy

10:30 test - test message

10:31 test2 - joined

10:32 test2 - this is a test, do you see me?
10:34 test - "zee yal zee yal", Rabbit Eggs shout

[“Sena |

7. Make sure the answer is received:

PUBLISHING

Mute A Mute V

Stop

10:31 chat - participants: test
10:32 test2 - this is a test, do you see me?
10:34 test - "zee yal zee yal", Rabbit Eggs shout

‘ Send ‘

8. To leave the chat room, click the Leave button.

Video chat

1. For the test we use:

® the demo server at demo.flashphoner.com;
* theTwo Way Video Chatweb application to organize a video chat

2.0pen the Two Way Video Chat web application. In the "Login" field enter any arbitrary user name, for example test:

Two Way Video Chat

WCS wss:/ip11_ flashphonel
URL
Login test Join

3. Click the Join button. A connection is established to the server, and the corresponding "ESTABLISHED" label is shown. The chat room is automatically
created:

https://demo.flashphoner.com/client2/examples/demo/streaming/video-chat/video-chat.html

Login

test

Leave |
ESTABLISHED

Below the screen, a text chat and a link to invite other users to the room are shown:

Mute A Mute V

Stop | PUBLISHING

10:40 chat - room is empty

Send

htmi?roomMName=room-ed67 5|

4. Copy the link to the chat room and open it in a new tab of the browser. Enter a user name other than that of the creator of the room, for example,
test2, and click the Join button. The page will display a large image from the web camera of the test user and a smaller image from the web camera of
the test2 user (in the lower left corner):

WCS URL

Login

Two Way Video Chat

wss://p11_flashphoner.com:

test2

Leave ESTABLISHED

test

5. In the text chat box, enter a message and click the Send button:

Mute A Mute V

Stop | PUBLISHING

10:42 chat - participants: test

this in a test, do you see me?

Send

6. On the tab of the test user enter an answer:

Mute A Mute vV
Stop PUBLISHING
10:40 chat - room is empty

10:42 test2 - joined
10:43 test2 - this ih a test, do you see me?

"zee yal zee yal", Rabbit Eggs shout]

Send

7. Make sure the answer is received:

| Mute A || Mute vV |

| Stop | PUBLISHING

10:42 chat - participants: test -
10:43 test2 - this ih a test, do you see me?
10:44 test - "zee yal zee yal", Rabbit Eggs shout

8. To leave the chat room, click the Leave button.

Video conference with screen sharing

1. For the test we use:

® the demo server at demo.flashphoner.com;
* theTwo Way Video Chat and Screenweb application to organize a video conference;
® the Chrome browser.

2. Open the "Two Way Video Chat & Screen" web application. If the Install Now button is active, click it and install the extension.
In the "Login" field enter any arbitrary user name, for example test. Click the Join button. A connection is established to the server, and the
corresponding "ESTABLISHED", label is show. The chat room is created automatically, and an image from the web camera is shown:

Login test Leawe |ESTABIJ5HED

NONE

https://demo.flashphoner.com/client2/examples/demo/streaming/video-chat-and-screen-sharing/video-chat-and-screen-sharing.html

3. Copy the link to the chat room and open it in a new tab of the browser. Enter a user name different from the name of the chat room's creator, for
example test2, and click the Join button. The page displays an image from the web camera:

FPS Width Height

Mute A Mute V Stop | PUBLISHING 30 640 480

) Share
10:51 chat - participants: test

4. Click the "Share" button and allow the browser to gain access to your screen or to the application window:

Width Height

Mute A Mute V Stop | PUBLISHING 30 640 480

Unshare
10:51 chat - participants: test

5. On the tab of the test user you should see the screen or the app window you allowed the browser to access:

test2

el Far LA

6. To leave the chat room, click the "Leave" button.

Call Flow

Below is the call flow when using the Conference example.
conference.html

conference.js

https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/conference/conference.html
https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/conference/conference.js

1. Flashphoner.roomApi.connect();

WCS

2. ConnectionStatusEvent ESTABLISHED

3. room.join();

4. RoomStatusEvent STATE

5. stream.publish();

6. StreamStatusEvent PUBLISHED

7. WebRTC audio+video stream

12. RoomStatusEvent JOINED

&

16. WebRTC audio+video stream

4l
|

17. room.leave();

18. RoomStatusEvent LEFT

1. Participant 1 establishes a connection to the server.

Flashphoner.roomApi.connect();code

8. Flashphoner.roomApi.connect();

9 _ ConnectionStatusEvent ESTABLISHED

10. room.join();

11. RoomStatusEvent STATE

13. WebRTC audio+video stream

14. stream.publish{);

k J

%

15. StreamStatusEvent PUBLISHED

16. WebRTC audio+video stream

4l
|

18. RoomStatusEvent LEFT

https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/conference/conference.js#L74

connection = Fl ashphoner.roomApi . connect ({url Server: url, usernane: usernane}).on(SESSI ON_STATUS. FAI LED,
function(session){

set Status(' #status', session.status());
onLeft();

}) . on(SESSI ON_STATUS. DI SCONNECTED, function(session) {
set Status(' #status', session.status());
onLeft();

}) . on(SESSI ON_STATUS. ESTABLI SHED, function(session) {
set Status(' #status', session.status());
j oi nRoom() ;

s

2. Participant 1 receives from the server an event confirming successful connection.

ConnectionStatusEvent ESTABLISHEDcode

connection = Fl ashphoner.roomApi . connect ({url Server: url, usernanme: usernane}).on(SESSI ON_STATUS. FAI LED,
function(session){

}) . on(SESSI ON_STATUS. DI SCONNECTED, function(session) {
}) . on(SESSI ON_STATUS. ESTABLI SHED, function(session) {
set Status(' #status', session.status());

j oi nRoomn() ;
IO N

3. Participant 1 enters the chat room.

connection.join();code
connection.join({nane: get RoonNane()}).on(ROOM EVENT. STATE, function(room{

1)

4. Participant 1 receives from the server an event describing the state of the room.

RoomStatusEvent STATEcode

https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/conference/conference.js#L74
https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/conference/conference.js#L87
https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/conference/conference.js#L87

connection. joi n({nane: get RoomNane()}).on(ROOM EVENT. STATE, function(room {
var participants = roomgetParticipants();
consol e. l og("Current nurmber of participants in the room " + participants.|ength);
if (participants.length >= _participants) {
consol e.warn("Current roomis full");
$("#failedlnfo").text("Current roomis full.");
room | eave().then(onLeft, onLeft);
return fal se;
}
set | nviteAddress(room nanme());
if (participants.length > 0) {
var chatState = "participants: ";
for (var i = 0; i < participants.length; i++) {
install Participant(participants[i]);
chatState += participants[i].nane();
if (i !=participants.length - 1) {
chatState += ",";

}
addMessage("chat", chatState);
} else {
addMessage("chat", " roomis enpty");
}

publ i shLocal Medi a(roon);
onJoi ned(room ;

1)

5. Participant 1 publishes the media stream.

room.publish();code

room publ i sh({
di splay: display,
constraints: constraints,
record: false,
recei veVideo: false,
recei veAudi o: fal se

1)

6. Participant 1 receives from the server an event confirming successful publishing of the stream.

StreamStatusEvent PUBLISHINGcode

room publ i sh({
di spl ay: display,
constraints: constraints,
record: false,
recei veVi deo: fal se,
recei veAudi o: fal se
}) . on(STREAM STATUS. FAI LED, function (stream {

}) . on(STREAM _STATUS. PUBLI SHI NG, function (stream {
set Status("#l ocal Status", streamstatus());
onMedi aPubl i shed(strean);

}) . on(STREAM_STATUS. UNPUBLI SHED, function(stream {

1)

7. Participant 1 sends the stream via WebRTC.

https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/conference/conference.js#L230
https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/conference/conference.js#L230

8. Participant 2 establishes a connection to the server.

9. Participant 2 receives from the server an event confirming successful connection.

10. Participant 2 enters the chat room.

11. Participant 2 receives from the server an event describing the state of the room.

12. Participant 1 receives from the server an event informing that participant 2 has joined.

RoomStatusEvent JOINEDcode

connection.joi n({nanme: get RoomNane()}).on(ROOM EVENT. STATE, function(room{

}) . on(ROOM_EVENT. JO NED, function(participant){
install Participant(participant);
addMessage(partici pant.nanme(), "joined");

}) . on(ROOM_EVENT. LEFT, function(participant){

}) . on(ROOM_EVENT. PUBLI SHED, function(participant){

}) . on(ROOM_EVENT. FAI LED, function(room info){

}) . on(ROOM_EVENT. MESSAGE, function(nessage){

1)

13. Participant 2 receives the stream published by participant 1.

14. Participant 2 publishes the media stream.

15. Participant 2 receives from the server an event confirming successful publishing of the stream.
16. Participant 2 sends the stream via WebRTC, participant 1 receives this stream.

17. Participant 1 leaves the chat room.

room.leave();code

function onJoi ned(room {
$("#joinBtn").text("Leave").off('click').click(function(){
$(this).prop('disabled , true);
room | eave().then(onLeft, onLeft);
}).prop(' disabled , false);

18. Participants of the room receive from the server an event informing that participant 1 has left the room.

RoomStatusEvent LEFTcode

connection.joi n({nanme: get RoonNane()}).on(ROOM EVENT. STATE, function(room{

}) . on(ROOM_EVENT. JO NED, function(participant){

}) . on(ROOM_EVENT. LEFT, function(participant){
/lrenmove participant
renovePartici pant (partici pant);
addMessage(participant.name(), "left");

}) . on(ROOM_EVENT. PUBLI SHED, function(participant){

}) . on(ROOM_EVENT. FAI LED, function(room info){

}) . on(ROOM_EVENT. MESSAGE, function(nessage){

1)

https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/conference/conference.js#L87
https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/conference/conference.js#L19
https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/conference/conference.js#L87

How to record streams published by room participants

Video streams published by room participants can be recorded. To do this, 'record' parameter must be set to 'true' while publishing a stream:

room publ i sh({
di spl ay: display,
constraints: constraints,
record: true,
recei veVi deo: fal se,
recei veAudi o: fal se

1)

A stream from any participant is recorded to a separate file. The issue of record files futher processing is that publication of them does not begin at the
same time.
Stream records synchronization

To allow streams merging, room streams may be synchronized by the first stream published. To enable this feature set the following parameter in flashph
oner.properties file

enabl e_enpty_shift_writer=true

For example, if User1 participant started publishing stream at00:00:10, and User2 participant did it at00:00:55, then second participant will get 45
seconds of empty video (black screen and silence) at record beginning. So, stream record filesUser1.mp4 and User2.mp4 will be same in duration, and
they can be merged.

By default, stream records synchronization is disabled. In this case, to merge participant streams, they can be mixed while publishing.

Streams recording test

1. For test we use:

* your WCS server, for exampletest2.flashphoner.com;
® Conference web application

2. Enable stream recording in Conference application

3.Enable stream records synchronization

enabl e_enpty_shift_witer=true

Restart WCS.

4. Open Conference application. Enter user name Alice to "Login" field and click 'Join'. The streamd from user Alice will be published:

https://docs.flashphoner.com/display/WCS5EN/Stream+recording
https://docs.flashphoner.com/display/WCS5EN/Settings+file+flashphoner.properties
https://docs.flashphoner.com/display/WCS5EN/Settings+file+flashphoner.properties
https://docs.flashphoner.com/display/WCS5EN/Stream+mixer

Conference

WCS URL wss/test2 flashphoner.com:8443

Login Alice Leave ESTABLISHED

NONE NONE

€ | ManyCamcom

PUBLISHING

5. Copy room link from "Invite" field:

Invite
https:/itest2 flashphoner com:8888/client2/examples/demo/streaming/conference/conference. htmi?roomName=room-4cd488

6. Go to room link in new browser window.Enter user name Bob to "Login" field and click 'Join'.The stream from Alice will be played, and stream from
Bob will be published:

Conference

WCS URL wss:/itest2 flashphoner.com: 8443
Login Bob Leave SRS =)
E ManyCam.com
Alice NONE

PUBLISHING

7. Click 'Leave' at user Bob window to leave the room. Click 'Leave' at user Alice window to finish the conference.

8. Stream record files are placed to /usr/local/FlashphonerWebCallServer/records directory:

-rwr--r-- 1 root root 1569566 Jun 29 07:51 stream 34296a60- 7b36- 11e8- bd9c- 31aaed48935e-
db8np51baj ci dn9gntnda3967k. np4

-rwr--r-- 1 root root 516509 Jun 29 07:51 stream 5aeb2351-7b36- 11e8- b398- b74e804508b2-
g97j 81cgrf8hilnvj | 7184f a788. np4

User Bobs' file is less then user Alices' one because Bobs' file has empty video in the beginning for futher synchronization. Download record files to PC
and play them.

9. Video stream from Alice is published, Bob has not enter to the room yet:

& stream-34296a60-7b36-11e8-bd9¢c-31aaed48935e-dbB8mp5... — O X -

Media Playback Audic Video Subtitle Teels View Help

00:46 02:43 | 00:47 CE—— 02:25
| [veem | D31 (5524 ‘ '-33:ﬂ= i Il | m | DIMH] S(|2|A4 P '-33:5]

10. Video stream from Bob is published:

. stream-34296260-7b36-11e8-bd9c-31aaed48935e-dbdmp5.. — O X =
Media Playback Audio Video Subtitle Tools View Help

01:05 02:43 | oL05 02:25

I wmpa D3t 5|24 ‘ '-33’ﬂ= i I v m | D21} 5|24 ‘ '-:::ﬂ i

Merging synchronized stream records using ffmpeg

Synchronized stream record files can be merged in chronological order using ffmpeg. To allow this, when stream is created, stream timeshift relative to
room creation time is specified on server side. Stream record files written by this way are merged with command (two participants example)

ffnpeg -i streanl.np4 -i strean2.np4 -filter_conplex "[0:v]pad=iw2:ih[int];[int][1:v]overlay=W2:0[vid];[0:a]
[1:a]anerge[a]"” -map [vid] -map "[a]" -ac 2 -strict -2 -c:v |ibx264 -crf 23 -preset veryfast output.np4

Where

® stream1 - first participant stream
® stream?2 - second participant stream

To merge files obtained during our test, enter the command:
ffnpeg -i stream 34296a60- 7b36- 11e8- bd9c- 31aaed48935e- db8np51baj ci dn9gncnda3967k. np4 -i stream 5aeb2351- 7b36-
11e8-b398- b74e804508b2- g97j 81lcgrf 8hinvj | 7184f a788. np4 -filter_conplex "[0:v]pad=iw2:ih[int];[int][1:v]overlay=W

/2:0[vid];[0:a][1l:a]amerge[a]"” -map [vid] -map "[a]" -ac 2 -strict -2 -c:v |ibx264 -crf 23 -preset veryfast
out put . np4

Then play output.mp4.file:

Media Playback Audie Video Subtitle Tools View Help

00:40
11 [m|] 22114 [S]2]2

Media Playback Audic Video Subtitle Teools View Help

'E‘ ManyCam.oom

01:16 .] 02:43
I | m|] 22114 [5]2]2

	Working with chat rooms

