
1.
2.
3.
4.

Working with chat rooms

Overview
Supported platforms and browsers
Supported codecs
Functions
Operation flowchart

Video conference
Video chat
Video conference with screen sharing
Call Flow
How to record streams published by room participants

Stream records synchronization
Streams recording test
Merging synchronized stream records using ffmpeg

Overview
Web Call Server allows embedding of a video chat to your project, that will work on most of modern browsers without installing third-party software as
well as on mobile devices.

Supported platforms and browsers

Chrome Firefox Safari 11 Edge

Windows + + +

Mac OS + + +

Android + +

iOS - - +

Supported codecs

Video: H.264, VP8
Audio: Opus, G.711

Functions

Video chat
Text chat
Video conference
Video conference with screen sharing

Operation flowchart

The browser of the participant 1 connects to the server via Websocket and sends the join command.
The browser of the participant 1 can send a stream via WebRTC to publish it in the chat room and receive streams published in the room.
The browser of the participant 2 connects to the server using Flash and sends the join command.
The browser of the participant 2 can send a stream via RTMP to publish it in the chat room and receive streams published in the room.

Video conference

1. For the test we use:

the demo server at demo.flashphoner.com;
the web application to organize a video conference.Conference

2. Open the Conference web application. In the "Login" field enter any arbitrary user name, for example test:

3. Click the Join button. A connection with the server is established, and you should see the corresponding "ESTABLISHED" label. The chat room is
automatically created:

https://demo.flashphoner.com/client2/examples/demo/streaming/conference/conference.html

In the bottom of the screen, an image from the web camera, a text chat and a link to invite users to the room are shown:

4. Copy the link to the chat room and open it in a new tab of the browser. Enter a user name other than the name of the chat room creator, for example,
test2, and click the Join button. The page will display an image from the web camera of the test participant (left) and from the web camera of the test2
participant (below):

5. In the text chat window of the test2 participant enter a message and click Send:

6. On the browser tab of the test participant enter an answer:

7. Make sure the answer is received:

8. To leave the chat room, click the Leave button.

Video chat
1. For the test we use:

the demo server at demo.flashphoner.com;
the web application to organize a video chatTwo Way Video Chat

2.Open the Two Way Video Chat web application. In the "Login" field enter any arbitrary user name, for example test:

3. Click the Join button. A connection is established to the server, and the corresponding "ESTABLISHED" label is shown. The chat room is automatically
created:

https://demo.flashphoner.com/client2/examples/demo/streaming/video-chat/video-chat.html

Below the screen, a text chat and a link to invite other users to the room are shown:

4. Copy the link to the chat room and open it in a new tab of the browser. Enter a user name other than that of the creator of the room, for example,
test2, and click the Join button. The page will display a large image from the web camera of the test user and a smaller image from the web camera of
the test2 user (in the lower left corner):

5. In the text chat box, enter a message and click the Send button:

6. On the tab of the test user enter an answer:

7. Make sure the answer is received:

8. To leave the chat room, click the Leave button.

Video conference with screen sharing
1. For the test we use:

the demo server at demo.flashphoner.com;
the web application to organize a video conference;Two Way Video Chat and Screen
the Chrome browser.

2. Open the "Two Way Video Chat & Screen" web application. If the Install Now button is active, click it and install the extension.
In the "Login" field enter any arbitrary user name, for example test. Click the Join button. A connection is established to the server, and the
corresponding "ESTABLISHED", label is show. The chat room is created automatically, and an image from the web camera is shown:

https://demo.flashphoner.com/client2/examples/demo/streaming/video-chat-and-screen-sharing/video-chat-and-screen-sharing.html

3. Copy the link to the chat room and open it in a new tab of the browser. Enter a user name different from the name of the chat room's creator, for
example test2, and click the Join button. The page displays an image from the web camera:

4. Click the "Share" button and allow the browser to gain access to your screen or to the application window:

5. On the tab of the test user you should see the screen or the app window you allowed the browser to access:

6. To leave the chat room, click the "Leave" button.

Call Flow
Below is the call flow when using the Conference example.

conference.html

conference.js

https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/conference/conference.html
https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/conference/conference.js

1. Participant 1 establishes a connection to the server.

Flashphoner.roomApi.connect();code

https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/conference/conference.js#L74

 connection = Flashphoner.roomApi.connect({urlServer: url, username: username}).on(SESSION_STATUS.FAILED,
function(session){
 setStatus('#status', session.status());
 onLeft();
 }).on(SESSION_STATUS.DISCONNECTED, function(session) {
 setStatus('#status', session.status());
 onLeft();
 }).on(SESSION_STATUS.ESTABLISHED, function(session) {
 setStatus('#status', session.status());
 joinRoom();
 });

2. Participant 1 receives from the server an event confirming successful connection.

ConnectionStatusEvent ESTABLISHEDcode

 connection = Flashphoner.roomApi.connect({urlServer: url, username: username}).on(SESSION_STATUS.FAILED,
function(session){
 ...
 }).on(SESSION_STATUS.DISCONNECTED, function(session) {
 ...
 }).on(SESSION_STATUS.ESTABLISHED, function(session) {
 setStatus('#status', session.status());
 joinRoom();
 });

3. Participant 1 enters the chat room.

connection.join();code

 connection.join({name: getRoomName()}).on(ROOM_EVENT.STATE, function(room){
 ...
 });

4. Participant 1 receives from the server an event describing the state of the room.

RoomStatusEvent STATEcode

https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/conference/conference.js#L74
https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/conference/conference.js#L87
https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/conference/conference.js#L87

 connection.join({name: getRoomName()}).on(ROOM_EVENT.STATE, function(room){
 var participants = room.getParticipants();
 console.log("Current number of participants in the room: " + participants.length);
 if (participants.length >= _participants) {
 console.warn("Current room is full");
 $("#failedInfo").text("Current room is full.");
 room.leave().then(onLeft, onLeft);
 return false;
 }
 setInviteAddress(room.name());
 if (participants.length > 0) {
 var chatState = "participants: ";
 for (var i = 0; i < participants.length; i++) {
 installParticipant(participants[i]);
 chatState += participants[i].name();
 if (i != participants.length - 1) {
 chatState += ",";
 }
 }
 addMessage("chat", chatState);
 } else {
 addMessage("chat", " room is empty");
 }
 publishLocalMedia(room);
 onJoined(room);
 ...
 });

5. Participant 1 publishes the media stream.

room.publish();code

 room.publish({
 display: display,
 constraints: constraints,
 record: false,
 receiveVideo: false,
 receiveAudio: false
 ...
 });

6. Participant 1 receives from the server an event confirming successful publishing of the stream.

StreamStatusEvent PUBLISHINGcode

 room.publish({
 display: display,
 constraints: constraints,
 record: false,
 receiveVideo: false,
 receiveAudio: false
 }).on(STREAM_STATUS.FAILED, function (stream) {
 ...
 }).on(STREAM_STATUS.PUBLISHING, function (stream) {
 setStatus("#localStatus", stream.status());
 onMediaPublished(stream);
 }).on(STREAM_STATUS.UNPUBLISHED, function(stream) {
 ...
 });

7. Participant 1 sends the stream via WebRTC.

https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/conference/conference.js#L230
https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/conference/conference.js#L230

8. Participant 2 establishes a connection to the server.

9. Participant 2 receives from the server an event confirming successful connection.

10. Participant 2 enters the chat room.

11. Participant 2 receives from the server an event describing the state of the room.

12. Participant 1 receives from the server an event informing that participant 2 has joined.

RoomStatusEvent JOINEDcode

 connection.join({name: getRoomName()}).on(ROOM_EVENT.STATE, function(room){
 ...
 }).on(ROOM_EVENT.JOINED, function(participant){
 installParticipant(participant);
 addMessage(participant.name(), "joined");
 }).on(ROOM_EVENT.LEFT, function(participant){
 ...
 }).on(ROOM_EVENT.PUBLISHED, function(participant){
 ...
 }).on(ROOM_EVENT.FAILED, function(room, info){
 ...
 }).on(ROOM_EVENT.MESSAGE, function(message){
 ...
 });

13. Participant 2 receives the stream published by participant 1.

14. Participant 2 publishes the media stream.

15. Participant 2 receives from the server an event confirming successful publishing of the stream.

16. Participant 2 sends the stream via WebRTC, participant 1 receives this stream.

17. Participant 1 leaves the chat room.

room.leave();code

function onJoined(room) {
 $("#joinBtn").text("Leave").off('click').click(function(){
 $(this).prop('disabled', true);
 room.leave().then(onLeft, onLeft);
 }).prop('disabled', false);
 ...
}

18. Participants of the room receive from the server an event informing that participant 1 has left the room.

RoomStatusEvent LEFTcode

 connection.join({name: getRoomName()}).on(ROOM_EVENT.STATE, function(room){
 ...
 }).on(ROOM_EVENT.JOINED, function(participant){
 ...
 }).on(ROOM_EVENT.LEFT, function(participant){
 //remove participant
 removeParticipant(participant);
 addMessage(participant.name(), "left");
 }).on(ROOM_EVENT.PUBLISHED, function(participant){
 ...
 }).on(ROOM_EVENT.FAILED, function(room, info){
 ...
 }).on(ROOM_EVENT.MESSAGE, function(message){
 ...
 });

https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/conference/conference.js#L87
https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/conference/conference.js#L19
https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/conference/conference.js#L87

How to record streams published by room participants
Video streams published by room participants can be . To do this, 'record' parameter must be set to 'true' while publishing a stream:recorded

 room.publish({
 display: display,
 constraints: constraints,
 record: true,
 receiveVideo: false,
 receiveAudio: false
 ...
 });

A stream from any participant is recorded to a separate file. The issue of record files futher processing is that publication of them does not begin at the
same time.

Stream records synchronization

To allow streams merging, room streams may be synchronized by the first stream published. To enable this feature set the following parameter in flashph
 fileoner.properties

enable_empty_shift_writer=true

For example, if User1 participant started publishing stream at00:00:10, and User2 participant did it at00:00:55, then second participant will get 45
seconds of empty video (black screen and silence) at record beginning. So, stream record filesUser1.mp4 and User2.mp4 will be same in duration, and
they can be .merged

By default, stream records synchronization is disabled. In this case, to merge participant streams, they can be while publishing.mixed

Streams recording test

1. For test we use:

your WCS server, for exampletest2.flashphoner.com;
Conference web application

2. Enable stream recording in Conference application

3.Enable stream records synchronization

enable_empty_shift_writer=true

Restart WCS.

4. Open Conference application. Enter user name Alice to "Login" field and click 'Join'. The streamd from user Alice will be published:

https://docs.flashphoner.com/display/WCS5EN/Stream+recording
https://docs.flashphoner.com/display/WCS5EN/Settings+file+flashphoner.properties
https://docs.flashphoner.com/display/WCS5EN/Settings+file+flashphoner.properties
https://docs.flashphoner.com/display/WCS5EN/Stream+mixer

5. Copy room link from "Invite" field:

6. Go to room link in new browser window.Enter user name Bob to "Login" field and click 'Join'.The stream from Alice will be played, and stream from
Bob will be published:

7. Click 'Leave' at user Bob window to leave the room. Click 'Leave' at user Alice window to finish the conference.

8. Stream record files are placed to /usr/local/FlashphonerWebCallServer/records directory:

-rw-r--r-- 1 root root 1569566 Jun 29 07:51 stream-34296a60-7b36-11e8-bd9c-31aaed48935e-
db8mp51bajcidn9qmcnda3967k.mp4
-rw-r--r-- 1 root root 516509 Jun 29 07:51 stream-5aeb2351-7b36-11e8-b398-b74e804508b2-
g97j81cgrf8h1m7jl7184fa788.mp4

User Bobs' file is less then user Alices' one because Bobs' file has empty video in the beginning for futher synchronization. Download record files to PC
and play them.

9. Video stream from Alice is published, Bob has not enter to the room yet:

10. Video stream from Bob is published:

Merging synchronized stream records using ffmpeg

Synchronized stream record files can be merged in chronological order using ffmpeg. To allow this, when stream is created, stream timeshift relative to
room creation time is specified on server side. Stream record files written by this way are merged with command (two participants example)

ffmpeg -i stream1.mp4 -i stream2.mp4 -filter_complex "[0:v]pad=iw*2:ih[int];[int][1:v]overlay=W/2:0[vid];[0:a]
[1:a]amerge[a]" -map [vid] -map "[a]" -ac 2 -strict -2 -c:v libx264 -crf 23 -preset veryfast output.mp4

Where

stream1 - first participant stream
stream2 - second participant stream

To merge files obtained during our test, enter the command:

ffmpeg -i stream-34296a60-7b36-11e8-bd9c-31aaed48935e-db8mp51bajcidn9qmcnda3967k.mp4 -i stream-5aeb2351-7b36-
11e8-b398-b74e804508b2-g97j81cgrf8h1m7jl7184fa788.mp4 -filter_complex "[0:v]pad=iw*2:ih[int];[int][1:v]overlay=W
/2:0[vid];[0:a][1:a]amerge[a]" -map [vid] -map "[a]" -ac 2 -strict -2 -c:v libx264 -crf 23 -preset veryfast
output.mp4

Then play output.mp4.file:

	Working with chat rooms

