
From an IP camera via RTSP

Overview
RTSP sources
Supported codecs
Supported platforms and browsers

Operation flowchart
Configuration
Quick manual on testing

Capturing of a video stream from the IP camera and playing it in a browser
Stream capture from the IP camera management by REST API

Testing
REST-queries

REST-methods and response statuses
Parameters

Call flow
RTSP connection reuse
Stream capture authentication
Known issues

Overview
A video stream is captured from an RTSP source that provides audio and video in the supported codecs. Then, the server transforms this video stream
for playing in browsers and mobile devices.

RTSP sources

IP cameras
Media servers
Surveillance systems
Conference servers

Supported codecs

H.264
VP8
AAC
G.711
Speex

Supported platforms and browsers

Chrome Firefox Safari 11 Internet Explorer Edge

Windows + + + +

Mac OS + + +

Android + +

iOS - - +

Operation flowchart

1. The browser establishes a connection to the server via the Websocket protocol and sends the play command.

2. The server connects to the RTSP source and send the play command.

3. The RTSP source sends the RTSP stream to the server.

4. The server transforms the stream to WebRTC and gives the stream to the browser.

Configuration
Sometimes, when IP camera should be connected through VPN, RTSP client should be bound to certain IP address. The optionrtsp_client_address in
settings file defines this address, for example:flashphoner.properties

rtsp_client_address=172.16.0.3

Quick manual on testing

Capturing of a video stream from the IP camera and playing it in a browser

1. For this test we use:

the demo server atdemo.flashphoner.com;
the web application to play the captured stream in the browser.Player

https://docs.flashphoner.com/pages/viewpage.action?pageId=1049300
https://demo.flashphoner.com/client2/examples/demo/streaming/player/player.html

2. Open the Player web app and specify the URL of the camera in the "Stream" field:

3. Click the "Start" button. Broadcasting of the captured stream begins.

4. WebRTC internals diagrams:

Stream capture from the IP camera management by REST API
Usually, it is enough to set the camera URL as stream name to capture stream from IP camera. However, it is possible to manage RTSP stream capture
by REST API if necessary.

Testing

1. For this test we use:

the demo server at ;demo.flashphoner.com
the Chrome browser and the to send queries to the server;REST-client
the web application to play the captured stream in the browser.Player

2. Open the REST client. Send the /rtsp/startup query specifying the URL of the web camera in parameters:

http://demo.flashphoner.com
https://chrome.google.com/webstore/detail/advanced-rest-client/hgmloofddffdnphfgcellkdfbfbjeloo
https://demo.flashphoner.com/client2/examples/demo/streaming/player/player.html

3. Make sure the stream is captured by the server. To do this, send the /rtsp/find_all query:

4. Open the Player web app and in the "Stream" field specify the URL of the web camera and click Start. Browser starts to play the stream:

5. Send the /rtsp/terminate query specifying the URL of the web camera in parameters:

6. Stream playback will terminate displaying an error:

REST-queries

A REST-query should be HTTP/HTTPS POST request as follows:

HTTP:http://test.flashphoner.com:8081/rest-api/rtsp/startup

HTTPS:https://test.flashphoner.com:8444/rest-api/rtsp/startup

Where:

test.flashphoner.com - is the address of the WCS server
8081 - is the standard REST / HTTP port of the WCS server
8444 - is the standard HTTPS port
rest-api - is the required part of the URL
/rtsp/startup - REST-method to use

REST-methods and response statuses

REST-
method

Example of REST-query Example of response Response
statuses

Description

/rtsp
/startup {

 "uri":"rtsp://myserver.com
/live/myStream"
}

409 - Conflict

500 - Internal
error

Pull the RTMP stream by the
specified URL

/rtsp
/find_all {

"uri": "rtsp://myserver.com
/live/myStream",
"status": "PLAYING"
}

200 – streams
found
404 – streams
not found

Find all pulled RTMP-streams

/rtsp
/terminate {

"uri":"rtsp://myserver.com
/live/myStream"
}

200 - stream
terminated
404 - stream not
found

Terminate the pulled RTMP
stream

Parameters

Parameter name Description Example

uri URL of the RTSP stream rtsp://myserver.com/live/myStream

status Current status of the stream PLAYING

Call flow
Below is the call flow when using the Player example

player.html

player.js

1. Establishing a connection to the server.

Flashphoner.createSession();code

 Flashphoner.createSession({urlServer: url}).on(SESSION_STATUS.ESTABLISHED, function(session){
 setStatus(session.status());
 //session connected, start playback
 playStream(session);
 }).on(SESSION_STATUS.DISCONNECTED, function(){
 setStatus(SESSION_STATUS.DISCONNECTED);
 onStopped();
 }).on(SESSION_STATUS.FAILED, function(){
 setStatus(SESSION_STATUS.FAILED);
 onStopped();
 });

rtsp://myserver.com/live/myStream
https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/player/player.html
https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/player/player.js
https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/player/player.js#L108

2. Receiving from the server an event confirming successful connection.

ConnectionStatusEvent ESTABLISHEDcode

 Flashphoner.createSession({urlServer: url}).on(SESSION_STATUS.ESTABLISHED, function(session){
 setStatus(session.status());
 //session connected, start playback
 playStream(session);
 }).on(SESSION_STATUS.DISCONNECTED, function(){
 ...
 }).on(SESSION_STATUS.FAILED, function(){
 ...
 });

3. Request to play the stream.

session.createStream(), stream.play();code

IP camera URL is passed to createStream() method as stream name

function playStream(session) {
 var streamName = $('#streamName').val();
 var options = {
 name: streamName,
 display: remoteVideo,
 flashShowFullScreenButton: true
 };
 ...
 stream = session.createStream(options).on(STREAM_STATUS.PENDING, function(stream) {
 ...
 });
 stream.play();
}

4. Request from WCS to the RTSP source to broadcast the stream.

5. Broadcasting the RTSP stream

6. Receiving from the server an event confirming successful capturing and playing of the stream.

StreamStatusEvent, статус PLAYINGcode

 stream = session.createStream(options).on(STREAM_STATUS.PENDING, function(stream) {
 ...
 }).on(STREAM_STATUS.PLAYING, function(stream) {
 $("#preloader").show();
 setStatus(stream.status());
 onStarted(stream);
 ...
 });
 stream.play();

7. Sending audio- and video stream via WebRTC

8. Stopping playing the stream.

stream.stop();code

https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/player/player.js#L108
https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/player/player.js#L122
https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/player/player.js#L141
https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/player/player.js#L57

function onStarted(stream) {
 $("#playBtn").text("Stop").off('click').click(function(){
 $(this).prop('disabled', true);
 stream.stop();
 }).prop('disabled', false);
 $("#fullScreenBtn").off('click').click(function(){
 stream.fullScreen();
 }).prop('disabled', false);
 $("#volumeControl").slider("enable");
 stream.setVolume(currentVolumeValue);
}

9. Receiving from the server an event confirming successful stop of the stream playback.

StreamStatusEvent, статус STOPPEDcode

 stream = session.createStream(options).on(STREAM_STATUS.PENDING, function(stream) {
 ...
 }).on(STREAM_STATUS.PLAYING, function(stream) {
 ...
 }).on(STREAM_STATUS.STOPPED, function() {
 setStatus(STREAM_STATUS.STOPPED);
 onStopped();
 }).on(STREAM_STATUS.FAILED, function(stream) {
 ...
 }).on(STREAM_STATUS.NOT_ENOUGH_BANDWIDTH, function(stream){
 ...
 });
 stream.play();

RTSP connection reuse
If other subscrubers request the stream captured from RTSP IP camera, the previous RTSP connection will be used if all subscribers set the same
camera URL. For example, two requests to the same IP camera

rtsp://host:554/live.sdp

and

rtsp://host:554/live.sdp?p=1

are differ, then two RTSP connections will be created if streams from both URLs are requested.

Stream capture authentication
WCS supports RTSP stream capture authentication by user name and password, user data should be set in stream URL, for example

rtsp://user:password@hostname/stream

If name or password contains any special characters, they should be escaped such as

rtsp://user:p%40ssword@hostname/stream

Where

user is user name
p@ssword is password with character '@', it is escaped in URL.

https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/player/player.js#L141

Known issues
1. A stream containing B-frames does not play or plays with artifacts (latencies, lags)

Symptoms:

a stream sent by the RTMP encoder does not play or plays with latencies or lags
warnings in the :client log

09:32:31,238 WARN 4BitstreamNormalizer - RTMP-pool-10-thread-5 It is B-frame!

Solution: change the encoder settings so, that B-frames were not used (lower encoding profile, specify in the command line etc).

2. AAC frames of type 0 are not supported by decoder and will be ignored while stream pulled playback

In this case, warnings will be displayed in the :client log

10:13:06,815 WARN AAC - AudioProcessor-c6c22de8-a129-43b2-bf67-1f433a814ba9 Dropping AAC frame that starts with
0, 119056e500

Solution: use Fraunhofer AAC codec with the following parameter inflashphoner.propertiesfile

use_fdk_aac=true

3. When publishing and then playing and recording H264 + AAC stream video may be out of sync with sound, or no sound at all.

Symptoms: when playing H264 + AAC stream published on server, and when recordingsuch stream, sound is out of sync with video or absent

Solution:

a) set the following parameter in fileflashphoner.properties

disable_drop_aac_frame=true

This parameter also turns off AAC frames dropping.

b) use Fraunhofer AAC codec

use_fdk_aac=true

4. Sound may be distorted or absent when resampled to 11025 Hz

Symptoms: when H264 + AAC stream published on WCS server is played with AAC sample rate 11025 Hz, sound is distorted or absent

Solution: do not use 11025 Hz sample rate, or escape AAC sound resampling to this rate, for example, do not set this sample rate in .SDP settings

5. Connection to the IP camera is lost on error in any track (audio or video)

Symptoms: connection to the IP camera is lost if one of tracks returns error 4**.
Solution: this behavior is enabled by default. However if one-time errors are not critical and should not terminate broadcasting, in the flashphoner.

files setproperties

rtsp_fail_on_error_track=false
rtp_force_synchronization=true

6. All the characters in a stream name, that are not allowed in URI, should be escaped

Symptoms: RTSP stream is not played with 'Bad URI' error
Solution: any character that is not allowed in URI, should be escaped in stream URL, for example

rtsp://hostname/c@@lstream/channel1

should be set as

https://docs.flashphoner.com/display/WCS5EN/WCS+Core+logs#WCSCorelogs-Clientlogs
https://docs.flashphoner.com/display/WCS5EN/WCS+Core+logs#WCSCorelogs-Clientlogs
https://docs.flashphoner.com/display/WCS5EN/Settings+file+flashphoner.properties
https://docs.flashphoner.com/display/WCS5EN/Settings+file+flashphoner.properties
https://docs.flashphoner.com/display/WCS5EN/SDP+settings+files
https://docs.flashphoner.com/pages/viewpage.action?pageId=1049300
https://docs.flashphoner.com/pages/viewpage.action?pageId=1049300

rtsp://hostname/c%40%40lstream/channel1

7. Some IP cameras do not support field in RTSP connection message header.cnonce

Symptoms: RTSP stream is played with VLC, but is not played with WCS.

Solution: set the following parameter in fileflashphoner.properties

rtsp_auth_cnonce=

with empty value.

https://docs.flashphoner.com/display/WCS5EN/Settings+file+flashphoner.properties

	From an IP camera via RTSP

