
WCS Core logs

Logging settings
Logging settings in flashphoner.properties
Logging settings in log4j.properties
Settings description
Logging settings hot swapping
Websocket messages tracing

Client logs
Switching on, off and managing logging level
Logging level managing "on the fly"

REST methods and response statuses
Parameters

Enabling debug log for all the client sessions
Using flight recorder
Client log structure and content

flashphoner.log log
client-report log
Media traffic dumps
flight_recorder.log log

Server logs
CDR logs
MDR logs
SDR logs
CONNDR logs
GC logs
Mediasessions statistics logs
CVE-2021-44228 vulnerability

Under the hoods: why WCS is not vulnerable

Logging settings
WCS Core logging is handled by the config and a number of settings in :log4j.properties flashphoner.properties

Logging settings in flashphoner.properties

Setting Default value

client_log_level INFO

client_dump_level 0

enable_extended_logging true

Logs are recorded to /usr/local/FlashphonerWebCallServer/logs

client_logs - logs recorded on the server side that correspond to the WCS server client session (client logs).
server_logs - general logs recorded on the server side.

Logging settings in log4j.properties

This is a standard config of the format.log4j

https://docs.flashphoner.com/display/WCS5EN/Settings+file+log4j.properties
https://docs.flashphoner.com/display/WCS5EN/Settings+file+flashphoner.properties
http://logging.apache.org/log4j

Settings description

Attribute Value Description

log4j.rootLogger info, stdout, fAppender Root logger.

info - INFO logging level. More detailed levels, for example, DEBUG and TRACE, and less
detailed, for example, ERROR are available.

stdout, fAppender - set how and where logs are output.

log4j.logger.incoming.
Publication

info, incoming_publication RTMFP-SIP calls statistics logger for the traffic incoming from a SIP server.

info - logging level
incoming_publication - sets how and where logs are output.

log4j.logger.outgoing.
Publication

info, outgoing_publication RTMFP-SIP calls statistics logger for the traffic outgoing to a SIP server.

info - logging level
outgoing_publication - sets how and where logs are output.

log4j.logger.pushLogs.
FlashphonerHandler

Not used Not used

log4j.additivity.incoming.
Publication

false Do not add these logs to the general log, recording them as individual logs instead

log4j.additivity.outgoing.
Publication

false Do not add these logs to the general log, recording them as individual logs instead

log4j.logger.sipMessages debug Put inbound and outgoing SIP messages to the log

log4j.logger.
WSServerHandler

trace Put outgoing Websocket messages to the log

log4j.logger.WSClient debug Put incoming Websocket messages to the log

log4j.appender.stdout org.apache.log4j.
ConsoleAppender

Output logs to stdout

log4j.appender.fAppender org.apache.log4j.
DailyRollingFileAppender

Output logs to fAppender

log4j.appender.
incoming_publication

org.apache.log4j.
DailyRollingFileAppender

Output RTMFP statistics to incoming_publication

log4j.appender.
outgoing_publication

org.apache.log4j.
DailyRollingFileAppender

Output RTMFP statistics to outgoing_publication

log4j.appender.clientLog org.apache.log4j.
DailyRollingFileAppender

Not used

Logging settings hot swapping

WCS automatically catches changes made to the log4j.properties file. This is convenient for debugging purposes and to receive additional logs without
restarting the server. For instance, when you need to enable more detailed logs and change the output format of logs. However, for higher reliability
during production, we recommend restarting the WCS server nevertheless.

Websocket messages tracing

For debugging purpose, or to develop your own API, all Websocket messages tracing except transport ones may be enabled. To log all
incoming\outgoing Websocket messages to websocket.log file in/usr/local/FlashphonerWebCallServer/logs/server_logs directory, the following strings
should be added tolog4j.properties file:

log4j.logger.WSServerHandler=trace, wsAppender
log4j.logger.WSClient=debug, wsAppender
log4j.appender.wsAppender=org.apache.log4j.DailyRollingFileAppender
log4j.appender.wsAppender.DatePattern='.'yyyy-MM-dd-HH
log4j.appender.wsAppender.layout=org.apache.log4j.PatternLayout
log4j.appender.wsAppender.layout.ConversionPattern=%d{HH:mm:ss,SSS} %-5p %20.20c{1} - %t %m%n
log4j.appender.wsAppender.File=${com.flashphoner.fms.AppHome}/logs/server_logs/websocket.log

Client logs

Switching on, off and managing logging level

Client logs are logs on the server that are relevant to a web client session. Client logs are only recorded to client_logs if the
enable_extended_logging=true setting is enabled (by default)

enable_extended_logging=true

To switch client logging off the following should be set in fileflashphoner.properties

enable_extended_logging=false

You can configure the logging detail level using the client_log_level setting that can assume the following values: ERROR, INFO, DEBUG, TRACE.By
default

client_log_level=INFO

It is recommended to use cron in conjuction with find to periodically purge client logs. For example, to check for outdated logs every 24 hours and delete
all logs older than 30 days add the following cron task

0 0 * * * find /usr/local/FlashphonerWebCallServer/logs/client_logs/ -type d -mtime +30 | xargs rm -rf

Logging level managing "on the fly"

https://docs.flashphoner.com/display/WCS5EN/Settings+file+flashphoner.properties

Logging level for certain session may be changed on the go, without server restart. To do this, REST queries are used

REST query should be HTTP/HTTPS POST request such as:

HTTP:http://test.flashphoner.com:8081/rest-api/logger/enable_client_log
HTTPS: /rest-api/logger/enable_client_loghttps://test.flashphoner.com:8444

Here:

test.flashphoner.comis WCS server address
8081 is WCS standard REST / HTTP port
8444is WCS standard HTTPS port
rest-api is required URL prefix
/logger/enable_client_logis REST method used

REST methods and response statuses

REST method Example of REST request Example of REST
response

Response status Description

/logger
/enable_client_log {

 "sessionId": "/127.0.0.1:57539/192.
168.1.101:8443",
 "logLevel": "DEBUG"
}

200 - Logging level is
changed

404 - Session not
found

Set the logging level specified in
session specified

/logger
/disable_client_log {

 "sessionId": "/127.0.0.1:57539/192.
168.1.101:8443"
}

200 - Logging is
disabled

404 - Session not
found

Fully disable logging in session
specified

Parameters

Parameter name Description Example

sessionId Session Id /127.0.0.1:57539/192.168.1.101:8443

logLevel Logging level to set DEBUG

Thus, when problem occurs with stream published on server (for example, the stream is published but cannot be played), REST query should be sent to
server to switch logging level to DEBUG and then, when problem is reproduced and data are collected, to switch logging level back to INFO. Also it is
possible to switch logging off in certain client session.

Logging level changes with REST queries affects only the session specified, but not another sessions including sessions that will be created later.

Enabling debug log for all the client sessions

To diagnose a problem, sometimes it is necessary to enable debug logging for all newly connected client sessions, to write to client logs connection
establishing process and stream publishing start. This feature can be enabled since build with the following parameter5.2.512

client_log_force_debug=true

For all newly connected clients debug logs will be recorded during interval defined with the following parameter in seconds

client_log_force_debug_timeout=60

By default client debug logs will be written in 60 seconds for each session connected.

These settings can be changed win and applied without server restart.CLI

Using flight recorder

http://test.flashphoner.com:8081/rest-api/logger/enable_client_log
https://test.flashphoner.com:8444
http://test.flashphoner.com
https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.512.tar.gz
https://docs.flashphoner.com/display/WCS52EN/Server+settings+management#Serversettingsmanagement-Changeaspecificoptionintheserversettings

Flight recorder function allows to cyclically write some latest events for stream published. This information may help to diagnose problems with stream
publishing without full client debug logs enabling. Flight recorder is enabled with the following parameter in fileflashphoner.properties

enable_flight_recorder=true

It is necessary to set events category that will be written (defined by developer)

flight_recorder_categories=WCS1438

The events are written for publisher client to flight_recorder.log file, if stream publishing stops by some error, or stream is corrupted by some way.

To test flight recorder, the parameter should be set

enable_flight_recorder_test=true

without restarting WCS server. It saves the events to file for all publishers connected.

Client log structure and content

Client logs structure:

client_logs
---- 2018-05-16
-------- 84gij60a6u3ni7docsr1di1l5b-15-06-59
------------ flashphoner.log
------------ client-84gij60a6u3ni7docsr1di1l5b-2018.05.16.15.07.26-1526458046646.report
------------ MediaDump-85d65b00-639e-4a7e.31002-31004-31006-31008.pcap

flashphoner.log log

Client logs are recorded to client_logs by dates. For each date, a directory is created with the name formatted as YYYY-MM-DD, for instance, 2018-05-
16.
When the web client establishes connection to the server, a folder for the current client session is created inside the date folder, for example,
84gij60a6u3ni7docsr1di1l5b-15-06-59, where 84gij60a6u3ni7docsr1di1l5b is a session identifier, 15 is hours, 06 is minutes, 59 is seconds. In the same
directory the flashphoner.log file is recorded, which contains only those server events that are relevant to this specific client session. Hence, we see
when the client connected to the server, and what logs were recorded for this client's session.

client-report log

This is an additional client log. The web client has a special WCS JavaScript API function 'pushLog'. This function sends to the WCS server logs
recorded on the browser side. All logs received from the web client using pushLog are saved on the server. When the web client ends a session with the
WCS server, the received logs are recorded to the client-84gij60a6u3ni7docsr1di1l5b-2018.05.16.15.07.26-1526458046646.report file, where
84gij60a6u3ni7docsr1di1l5b is a session identifier, 2018 is year, 05 is month, 26 is day, 15 is hours, 07 is minutes, 26 is seconds, 1526458046646 is
milliseconds.

Media traffic dumps

If in the settings file a non-zero value is set for the client_dump_level setting, a dump session is additionally recorded for a client:flashphoner.properties

if client_dump_level=1, only SIP traffic is recorded;
if client_dump_level=2, all media traffic is recorded.

Traffic is recorded using tcpdump, if this utility is installed in the system.

flight_recorder.log log

Last events for stream published are written to this file.

Server logs

The parameter is not intended to use in productionenable_flight_recorder_test

https://docs.flashphoner.com/display/WCS5EN/Settings+file+flashphoner.properties
https://docs.flashphoner.com/display/WCS5EN/Settings+file+flashphoner.properties

WCS Core records general server logs to logs/server_logs

server_logs
---- flashphoner.log
---- flashphoner.log.2018-05-17-16

In these logs you can track start of the server and its starting settings:

tail -f flashphoner.log

Server startup

Shutting down the server

Licensing information:

Besides, REST hooks queries information is displayed in server logs:

08:01:06,649 INFO RestClient - API-ASYNC-pool-8-thread-2 SEND REST OBJECT ==>
URL:http://localhost:8081/EchoApp/StreamStatusEvent
OBJECT:
{
 "nodeId" : "rR3YA7yKB11iIIID4XkYveTF8ePhezMU@0.0.0.0",
 "appKey" : "defaultApp",
 "sessionId" : "/5.44.168.45:58541/95.191.131.65:8443",
 "mediaSessionId" : "58488550-99dd-11e8-bf13-9b5947c0a0f5",
 "name" : "569a",
 "published" : true,
 "hasVideo" : true,
 "hasAudio" : true,
 "status" : "PUBLISHING",
 "audioCodec" : "opus",
 "videoCodec" : "H264",
 "info" : "Unknown",
 "record" : false,
 "width" : 0,
 "height" : 0,
 "bitrate" : 0,
 "minBitrate" : 0,
 "maxBitrate" : 0,
 "quality" : 0,
 "timeShift" : -1,
 "createDate" : 1533603665644,
 "mediaProvider" : "WebRTC",
 "history" : false,
 "origin" : "https://test.flashphoner.com:8888"
}

Therefore, server logs offer general information about server operation. You can receive more detailed information in logs that are recorded individually
for each client session.

CDR logs
Сall Detail Record is a SIP calls log.

CDR records are added to a log file located at . A new log file is created every 24 hours. Data are recorded as a CSV file, so they can be logs/cdr/cdr.log
easily processed.

Field names are not recorded to the file.

Record format:

src;dst,cid,start,answer,end,billsec,disposition

Record example:

3000;3001;f294f6116bf2cc4c725f20457ed76e5b@192.168.56.2;2014-11-21 15:01:37; 2014-11-21 15:01:41; 2014-11-21 15:
02:45;64;ANSWERED

Field Description

src Caller

dst Callee

cid Call identifier

start Call start (date and time).

answer Date and time the call is answered by the subscriber or the SIP side.

end Date and time the call ended.

billsec Time in seconds between 'answer' and 'end'.

disposition Call result: .ANSWERED, NO_ANSWER, BUSY, FAILED

MDR logs
Message Detail Record is a SIP messages log.

MDR records are added to a log file located at . A new log file is created every 24 hours. Data are recorded as a CSV file, so they can be logs/cdr/mdr.log
easily processed.

Field names are not recorded to the file.

Record format:

date,msgId,from,to,disposition

Record example:

Fri Dec 26 15:26:16 NOVT 2014,null,A006,A005,RECEIVED

Field Description

date Date and time of the message

msgId Message identifier. Is present only in message/cpim messages if isImdnRequired=true (see Web Call Server - Call Flow documentation,
parameters of the passed messages in the method are described there).sendMessage

from SIP from

to SIP to

dispos
ition

Message result: .RECEIVED, SENT, FAILED

RECEIVED- the message is received.

SENT- the message is sent.

FAILED- there were an error while sending the message.

You can also gather any message statistics and their statuses you need using WCS REST API. See Web Call Server - Call Flow documentation that
describes all methods and data sets that WCS sends via REST when it processes messages.

SDR logs
Stream Detail Record is a stream publishing and playing session logs.

SDR records are written to the file located at . A new log file is created every 24 hours. Data are recorded as a CSV file, so they can be sdr.log logs/cdr
easily processed.

Field names are not recorded to the file.

Record format:

start;mediaProvider;name;mediaSessionId;duration;disposition;info;type;subscribers;

Record example:

2015-11-11 08:36:13;Flash;stream-Bob;5c2d75c0-7d87-421d-aa93-2732c48d8eaa;00:00:48;UNPUBLISHED;;PUBLISH;3;

Field Description

start Date and time the session started

mediaProvider The media used in WCS JavaScript API:WebRTC, Flash

name Name of the published / played stream

mediaSessionId Media session identifier

duration Duration of the session

disposition Session result:UNPUBLISHED, STOPPED, FAILED

UNPUBLISHED- publishing of the stream was stopped

STOPPED- playing of the stream was stopped

FAILED- incorrect session end

info If disposition== , this field contains the description of the reasonFAILED

type PUBLISHif publishing the stream

SUBSCRIBEif playing the stream

subscribers The number of subscribers in case of publishing the stream; 0 if playing the stream

CONNDR logs
Connection Detail Record is a WebSocket sessions log.

CONNDR records are written to the log file located at . A new log file is created every 24 hours. Data are recorded as a CSV file, so they sdr.log logs/cdr
can be easily processed.

Field names are not recorded to the file.

Record format:

start;mediaSessionId;disposition;info;duration;

Record example:

2018-04-25 19:29:08;/5.44.168.45:52199/95.191.131.64:8443;DISCONNECTED;Normal disconnect;17;

Field Description

start Date and time the session started

mediaSessionId Media session identifier

disposition Session result:DISCONNECTED, FAILED

DISCONNECTED- the session ended by client's initiative

FAILED- incorrect session end

info Contains information about the session end

duration Duration of the session

GC logs
By default garbage collector log files are located in /usr/local/FlashphonerWebCallServer/logs directory.

logs
---- gc-core-2018-12-18_20-02.log
---- gc-core-2018-12-18_19-56.log

The location and prefix of the log files can be configured in file.wcs-core.properties

To enable log rotation by the JVM, the following options can be added to :wcs-core.properties

https://docs.flashphoner.com/display/WCS5EN/Settings+file+wcs-core.properties
https://docs.flashphoner.com/display/WCS5EN/Settings+file+wcs-core.properties

-XX:+UseGCLogFileRotation
-XX:NumberOfGCLogFiles=10
-XX:GCLogFileSize=2M

Then the log files will have names like

logs
---- gc-core.log2018-12-14_18-57.log.0
---- gc-core.log2018-12-14_18-57.log.1
---- gc-core.log2018-12-14_18-57.log.2
---- gc-core.log2018-12-14_18-57.log.3
---- gc-core.log2018-12-14_18-57.log.4.current

File with suffix 'current' is the file currently being recorded.

To remove creation time from log file names, remove date from variable GC_SUFFIX in bin/setenv.sh:

GC_SUFFIX=".log"

Then the log files will have names like

logs
---- gc-core.log.0
---- gc-core.log.1
---- gc-core.log.2.current

Mediasessions statistics logs
Since build5.2.1883 may be collected. The statistics may be logged to save it to a file when mediasession is closed. a current mediasessions statistics

The mediasessions statistics is logged to the /usr/local/FlashphonerWebCallServer/logs/stats/media-session-connection-stats.
 file in CSV formlog

#{mediaSessionId}; {channels_not_writable}; {decodable_drops_old}; {incomplete_drops_old};
{decodable_drops_reset}; {incomplete_drops_reset}; {decodable_drops_pli}; {incomplete_drops_pli};
{data_packets_with_empty_payload}; {missed_h264_units}; {dropped_audio_data_packets}

Where

mediaSessionId - mediasession id
channels_not_writable -TCP channels not writable events count
decodable_drops_old - H264 decodable frames dropped count
incomplete_drops_old - H264 incomplete frames dropped count
decodable_drops_reset - H264 decodable frames dropped before a new decoding point count
incomplete_drops_reset - H264 incomplete frames dropped before a new decoding point count
decodable_drops_pli - H264 decodable frames dropped on PLI receiving count
incomplete_drops_pli - H264 incomplete frames dropped on PLI receiving count
data_packets_with_empty_payload - data packets with empty payload sent to test a channel quality when TWCC is enabled count
missed_h264_units - missed H264 units count, per mediasession
dropped_audio_data_packets - audio packets dropped before passing them to server engine

The record example

f49f8cb0-dc52-11ee-81df-51ad589334c0; 0; 0; 7; 0; 0; 0; 10; 0; 443; 0

The statistics logging should be set up in file as followslog4j.properties

https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.1883.tar.gz
https://docs.flashphoner.com/display/WCS52EN/Load+and+resource+usage+information#Loadandresourceusageinformation-TCPchannelstatistics

log4j.logger.MediaSessionConnectionStats=error, mediaSessionConnectionStatsAppender
log4j.additivity.MediaSessionConnectionStats=false
log4j.appender.mediaSessionConnectionStatsAppender=com.flashphoner.common.logging.NewLogForEachRunFileAppender
log4j.appender.mediaSessionConnectionStatsAppender.DatePattern='.'yyyy-MM-dd-HH
log4j.appender.mediaSessionConnectionStatsAppender.layout=org.apache.log4j.PatternLayout
log4j.appender.mediaSessionConnectionStatsAppender.layout.ConversionPattern=%m%n
log4j.appender.mediaSessionConnectionStatsAppender.File=${com.flashphoner.fms.AppHome}/logs/stats/media-session-
connection-stats.log

CVE-2021-44228 vulnerability
 vulnerability in Apache log4j library cannot be exploited on WCS server. The logger can be configured via only, so CVE-2021-44228 log4j.properties

attacker must have access to server file system. The vulnerability cannot be exploited via input fields etc. Let's check:

1. Use the URL to check the server. This page will generate an unique link to insert to a web page input fieldshttps://log4shell.huntress.com/

2, Open Two Way Streaming example page on demo server https://demo.flashphoner.com:8888/client2/examples/demo/streaming/two_way_streaming
, click and insert the test link to stream name fields. Publish and play a stream:/two_way_streaming.html Connect

3. Open a special link to view test results. If vulnerability is exploited, and columns will show connections from tested serverIP address Date/Time

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-44228
https://docs.flashphoner.com/display/WCS5EN/Settings+file+log4j.properties
https://log4shell.huntress.com/
https://demo.flashphoner.com:8888/client2/examples/demo/streaming/two_way_streaming/two_way_streaming.html
https://demo.flashphoner.com:8888/client2/examples/demo/streaming/two_way_streaming/two_way_streaming.html

As test shows, the CVE-2021-44228 vulnerability cannot be exploited in latest WCS build 5.2.1109

Under the hoods: why WCS is not vulnerable

WCS uses Apache log4j 1.2.17. This old version does not support JDNI feature which is added . Therefore, CVE-2021-44228 since log4j 2.0-beta9
vulnerability cannot be exploited in WCS.

https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.1109.tar.gz
https://issues.apache.org/jira/browse/LOG4J2-313

	WCS Core logs

