WGCS Core logs

® Logging settings
® |ogging settings in flashphoner.properties
® Logging settings in log4j.properties
® Settings description
® Logging settings hot swapping
Websocket messages tracing
® (Client logs
® Switching on, off and managing logging level
® Logging level managing "on the fly"
® REST methods and response statuses
® Parameters
® Using flight recorder
® (Client log structure and content
* flashphoner.log log
® client-report log
® Media traffic dumps
* flight_recorder.log log

Server logs
CDR logs
MDR logs
SDR logs
CONNDR logs
GC logs

Logging settings

WCS Core logging is handled by thelog4j.propertiesconfig and a number of settings inflashphoner.properties:

Logging settings in flashphoner.properties

Setting Default value
client_log_level INFO
client_dump_level 0

enable_extended_logging @ true

Logs are recorded to /usr/local/FlashphonerWebCallServer/logs

* client_logs - logs recorded on the server side that correspond to the WCS server client session (client logs).
® server_logs - general logs recorded on the server side.

Logging settings in log4j.properties

This is a standard config of thelog4jformat.

https://docs.flashphoner.com/display/WCS5EN/Settings+file+log4j.properties
https://docs.flashphoner.com/display/WCS5EN/Settings+file+flashphoner.properties
http://logging.apache.org/log4j

mc - root@Ilocalhost:/usr/local/FlashphonerWebCallServer-3.0.1011/conf -

Settings description

Attribute

log4j.rootLogger

log4j.logger.incoming.
Publication

log4j.logger.outgoing.
Publication

log4j.logger.pushLogs.
FlashphonerHandler

log4j.additivity.incoming.
Publication

log4j.additivity.outgoing.
Publication

log4j.logger.sipMessages

log4j.logger.
WSServerHandler

Value

info, stdout, fAppender

info, incoming_publication

info, outgoing_publication

Not used

false

false

debug

trace

Description

Root logger.

info - INFO logging level. More detailed levels, for example, DEBUG and TRACE, and less
detailed, for example, ERROR are available.

stdout, fAppender - set how and where logs are output.
RTMFP-SIP calls statistics logger for the traffic incoming from a SIP server.

info - logging level
incoming_publication - sets how and where logs are output.

RTMFP-SIP calls statistics logger for the traffic outgoing to a SIP server.

info - logging level

outgoing_publication - sets how and where logs are output.

Not used

Do not add these logs to the general log, recording them as individual logs instead

Do not add these logs to the general log, recording them as individual logs instead

Put inbound and outgoing SIP messages to the log

Put outgoing Websocket messages to the log

log4j.logger.WSClient

log4j.appender.stdout
log4j.appender.fAppender
log4j.appender.

incoming_publication

log4j.appender.
outgoing_publication

log4j.appender.clientLog

debug

org.apache.log4.
ConsoleAppender

org.apache.log4j.
DailyRollingFileAppender

org.apache.log4j.
DailyRollingFileAppender

org.apache.log4j.
DailyRollingFileAppender

org.apache.log4j.

Put incoming Websocket messages to the log

Output logs to stdout

Output logs to fAppender

Output RTMFP statistics to incoming_publication

Output RTMFP statistics to outgoing_publication

Not used

DailyRollingFileAppender

Logging settings hot swapping

WCS automatically catches changes made to the log4j.properties file. This is convenient for debugging purposes and to receive additional logs without
restarting the server. For instance, when you need to enable more detailed logs and change the output format of logs. However, for higher reliability
during production, we recommend restarting the WCS server nevertheless.

Websocket messages tracing

For debugging purpose, or to develop your own API, all Websocket messages tracing except transport ones may be enabled. To log all

incoming\outgoing Websocket messages to websocket.log file in/usr/local/FlashphonerWebCallServer/logs/server_logs directory, the following strings
should be added tolog4j.properties file:

| 0g4j . | ogger . WBSer ver Handl er =t race, wsAppender

| 0g4j . | ogger . WsCl i ent =debug, wsAppender

| 0g4j . appender . wsAppender =or g. apache. | og4j . Dai | yRol | i ngFi | eAppender

| 0g4j . appender . wsAppender . Dat ePattern="." yyyy- M\ dd- HH

| 0g4j . appender . wsAppender . | ayout =or g. apache. | og4j . Pat t er nLayout

| 0og4j . appender . wsAppender . | ayout . Conver si onPat t er n=%{ HH: mm ss, SSS} % 5p %20.20c{1} - % % ?;m
| og4j . appender . wsAppender . Fi | e=${com f | ashphoner . f ms. AppHone}/ | ogs/ server _| ogs/ websocket . | og

Client logs

Switching on, off and managing logging level

Client logs are logs on the server that are relevant to a web client session. Client logs are only recorded to client_logs if the
enable_extended_logging=true setting is enabled (by default)

enabl e_ext ended_| oggi ng=true

To switch client logging off the following should be set inflashphoner.propertiesfile

enabl e_ext ended_I oggi ng=f al se

You can configure the logging detail level using the client_log_level setting that can assume the following values: ERROR, INFO, DEBUG, TRACE.By
default

client_log_l evel =I NFO

Managing automatic purging of these logs is performed using the settings: keep_extended_logs_max_days, extended_logs_dir_depth,
check_extended_logs_interval. By default, check for outdated logs is performed every 24 hours and all logs older than 30 days are deleted. To modify
client logs storage and deletion rules, edit these settings and restart the WCS server.

Logging level managing "on the fly"

Logging level for certain session may be changed on the go, without server restart. To do this, REST queries are used

REST query should be HTTP/HTTPS POST request such as:

https://docs.flashphoner.com/display/WCS5EN/Settings+file+flashphoner.properties

® HTTP:http://test.flashphoner.com:8081/rest-api/logger/enable_client_log
® HTTPS:https://test.flashphoner.com:8444/rest-api/logger/enable_client_log

Here:

test.flashphoner.comis WCS server address
8081 is WCS standard REST / HTTP port
8444is WCS standard HTTPS port

rest-api is required URL prefix
/logger/enable_client_logis REST method used

REST methods and response statuses

REST method Example of REST request Example of REST Response status Description
response
/logger 200 - Logging level is | Set the logging level specified in
/enable_client_log { changed session specified
"sessionld": "/127.0.0.1:57539/192.
168. 1. 101: 8443" 404 - Session not
T . ! found
"1 ogLevel ": " DEBUG'
}
/logger 200 - Logging is Fully disable logging in session
/disable_client_log { disabled specified
"sessionld": "/127.0.0.1:57539/192.
168. 1. 101: 8443" 404 - Session not
T ’ found
}
Parameters
Parameter name Description Example
sessionld Session Id /127.0.0.1: 57539/ 192. 168. 1. 101: 8443
logLevel Logging level to set DEBUG

Thus, when problem occurs with stream published on server (for example, the stream is published but cannot be played), REST query should be sent to
server to switch logging level to DEBUG and then, when problem is reproduced and data are collected, to switch logging level back to INFO. Also it is
possible to switch logging off in certain client session.

Logging level changes with REST queries affects only the session specified, but not another sessions including sessions that will be created later.

Using flight recorder

Flight recorder function allows to cyclically write some latest events for stream published. This information may help to diagnose problems with stream
publishing without full client debug logs enabling. Flight recorder is enabled with the following parameter inflashphoner.propertiesfile

enabl e_flight_recorder=true

It is necessary to set events category that will be written (defined by developer)

flight_recorder_categori es=WS1438

The events are written for publisher client to flight_recorder.log file, if stream publishing stops by some error, or stream is corrupted by some way.

To test flight recorder, the parameter should be set

enabl e_flight_recorder_test=true

without restarting WCS server. It saves the events to file for all publishers connected.

https://docs.flashphoner.com/display/WCS5EN/Settings+file+flashphoner.properties

@ The enabl e_f1i ght _recorder_test parameter is not intended to use in production

Client log structure and content

Client logs structure:

client_|ogs

---- 2018-05-16

-------- 84gi j 60a6u3ni 7docsr 1di 11 5b- 15- 06- 59

------------ fl ashphoner. | og

____________ cl i ent - 84gi j 60a6u3ni 7docsr 1di 11 5b- 2018. 05. 16. 15. 07. 26- 1526458046646. r epor t
____________ Medi aDunp- 85d65b00- 639e- 4a7e. 31002- 31004- 31006- 31008. pcap

flashphoner.log log

Client logs are recorded to client_logs by dates. For each date, a directory is created with the name formatted as YYYY-MM-DD, for instance, 2018-05-
16.

When the web client establishes connection to the server, a folder for the current client session is created inside the date folder, for example,
844ij60abu3ni7docsr1di1l5b-15-06-59, where 84gij60a6u3ni7docsri1dill5b is a session identifier, 15 is hours, 06 is minutes, 59 is seconds. In the same

directory the flashphoner.log file is recorded, which contains only those server events that are relevant to this specific client session. Hence, we see
when the client connected to the server, and what logs were recorded for this client's session.

client-report log

This is an additional client log. The web client has a special WCS JavaScript API function 'pushLog'. This function sends to the WCS server logs
recorded on the browser side. All logs received from the web client using pushLog are saved on the server. When the web client ends a session with the
WCS server, the received logs are recorded to the client-84gij60a6u3ni7docsr1di1l5b-2018.05.16.15.07.26-1526458046646.report file, where
844ij60abu3ni7docsr1di1l5b is a session identifier, 2018 is year, 05 is month, 26 is day, 15 is hours, 07 is minutes, 26 is seconds, 1526458046646 is
milliseconds.

Media traffic dumps
If in theflashphoner.propertiessettings file a non-zero value is set for the client_dump_level setting, a dump session is additionally recorded for a client:

* if client_dump_level=1, only SIP traffic is recorded;
® if client_dump_level=2, all media traffic is recorded.

Traffic is recorded using tcpdump, if this utility is installed in the system.

flight_recorder.log log

Last events for stream published are written to this file.

Server logs

WCS Core records general server logs to logs/server_logs

server _| ogs
---- flashphoner.|og
---- flashphoner.| og.2018-05-17-16

In these logs you can track start of the server and its starting settings:

tail -f flashphoner.|og

Server startup

https://docs.flashphoner.com/display/WCS5EN/Settings+file+flashphoner.properties

9:21,682 INFO
5:21,683 INFO
7 5:21,693 INFO

Patches NOT installed
NODE_TD: Op8P1bTHDacuaVfAELoJgcOFiHDVYONLED.0.0.0
SettingsLoader - main Flashphoner config has been validated success
SettingsLoader - main Server properties have been loaded:
wss.port=8443, burst_avoidance_count=108, wss.cert.password=password, get_callee_url=/usr/local/FlashphonerilebCal
SettingslLoader - main Override setting media_port_to: from 32000 to 32000
Settingsloader - main Override setting wss.port: from 8443 to 8443
Settingsloader - main Querride setting wss.cert.password: from password to password
SettingslLoader - main Querride setting burst_avoidance_count: from null to 100
Settingsloader - main Querride setting get_callee_url: from null to /usr/local/FlashphoneriebCallServer/conf/c
Settings - main Setting 'log_level is not found. Please check setting.
Settingsloader - main Override setting flush_video_interval: from 80 to 8
Settingsloader - main Override setting audio_frames_per_packet: from -1 to 6
Settingsloader - main Override setting call_record_listener: from null to com.flashphoner.server.client.Defaul
Settings - main Setting 'waiting_answer’ is not found. Please check setting.
Settingsloader - main Querride setting on_record_hook_script: from null to on_record_hook.sh
Settingsloader - main Ouerride setting keep_alive.peer interval: from 2000 to 2000
Settings - main Setting 'enable context logs’ is not found. Please check setting.
SettingsLoader - main Override setting keep_alive.server_interval: from 5000 to 5000
Settingsloader - main Override setting ip_local: from 0.0.0.0 to 95.191.131.64
Settingsloader - main Override setting codecs_exclude_streaming: from null to flv, telephone-event
SettingsLoader - main Override setting balance_header: from null to balance
Settingsloader - main Override setting domain: from null to
Settingsloader - main Override setting audio_reliable: from partial to partial
Settingsloader - main Querride setting codecs_exclude_sip_rtmp: from null to opus,g?29,9722 mpegh-generic,vp8,
Settingsloader - main OQverride setting user_agent: from Flashphoner/1.0 to Flashphoner/1.0
Settingsloader - main Override setting rtmp_transponder stream name prefix: from null to rtmp_
SettingsLoader - main Override setting video_reliable: from partial to partial
SettingsLoader - main Override setting codecs: from null to opus,alaw,ulaw,g729, speexl6, 9722, mpegh-generic, teld

Config - main
Config - main

ShutdownHandler
ShutdownHandler
ativeShutdownHandler
ShutdownHandler
Sessions
ShutdownHandler
ShutdownHandler
ShutdownHandler
ShutdownHandler
ShutdownHandler
ShutdownHandler
ShutdownHandler

INFO ativeShutdownHandler

Licensing information:

[17:35:22.722 INFO SiplUserfgentlListener
fictivation date: 2018.04.09

xpiration date: 2017.108.22

I - e x

ompany: Flashphoner

roduct name: Web Call Server 5
eatures:
icenseNumber :
1censeTupe
icenseSc:
ardwareld:

Subscription

[wes rtmfp2rtmfp_broadcasting,

363636 3636 596 36— I 36 36— 36 B IEHE — 3366 I — 5696 3653 36 36 26

wes_sip_as_rimp,

Thread-15 Shutting down RTHP Connections
Thread-21 Shutting down Rtsp sessions
Thread-6 Shutting down native libs

Thread-18 Shutting down RTHFP Connections
Thread-18 shutdown

Thread-18 RTHFP connections closed

Thread-15 RTHP connections closed

Thread-21 Rtsp sessions closed

Thread-20 Shutting down WebSocket connections
Thread-20 YebSocket connections closed
Thread-19 Shutting down WebSocket connections
Thread-19 YebSocket connections closed
Thread-6 Done

main License details

rtc?sip vwp8, flash?sip_h264, flash?sip h263,

25349ABAFBBAEGEEBIEAI168BEEDA1DES3EA JA190FFS 71AF38DO15 7DAAID3FBASL9F 7ORCBEB 7BB4BDLB4BIFBB6B 72494204 DBFF495B798C28D6D423 7E5(]

Support: Monthly subscription basic support

Besides, REST hooks queries information is displayed in server logs:

wcs_webrtc_screen_sharing,

08: 01: 06, 649 | NFO Restdient - API-ASYNC pool -8-thread-2 SEND REST OBJECT ==>
URL: http://1 ocal host: 8081/ EchoApp/ St r eantt at usEvent

OBJECT:
{
"nodel d" : "rR3YA7yKB11il || D4XkYveTF8ePhezMJ@. 0. 0. 0",
"appKey" : "defaul t App",
"sessionld" : "/5.44.168. 45: 58541/ 95. 191. 131. 65: 8443",
"medi aSessi onl d" : "58488550-99dd- 11e8- bf 13- 9b5947c0a0f 5",
"name" : "569a",
"published" : true,
"hasVi deo" : true,
"hasAudi 0" : true,
"status" : "PUBLI SH NG',
"audi oCodec" : "opus",
"vi deoCodec" : "H264",
"info" : "Unknown",
"record" : false,
"width" : 0,
"height" : 0,
"bitrate" : 0,
"mnBitrate" : O,
"maxBitrate" : O,
"quality" : O,
"timeShift" : -1,
"createDate" : 1533603665644,
"nmedi aProvi der" : "WDbRTC',
"history" : false,
"origin" : "https://test.flashphoner.com 8888"
}

Therefore, server logs offer general information about server operation. You can receive more detailed information in logs that are recorded individually
for each client session.

CDR logs

Call Detail Record is a SIP calls log.

CDR records are added to a log file located atlogs/cdr/cdr.log. A new log file is created every 24 hours. Data are recorded as a CSV file, so they can be
easily processed.

Field names are not recorded to the file.

Record format:

src;dst, cid, start, answer, end, bi | | sec, di sposition

Record example:

3000; 3001; f 294f 6116bf 2cc4c725f 20457ed76e5b@92. 168. 56. 2; 2014- 11-21 15: 01: 37; 2014-11-21 15:01:41; 2014-11-21 15:
02: 45; 64; ANSWERED

Field Description
src Caller
dst Callee
cid Call identifier
start Call start (date and time).
answer Date and time the call is answered by the subscriber or the SIP side.
end Date and time the call ended.

billsec Time in seconds between 'answer' and 'end'.

disposition | Call result: ANSWERED, NO_ANSWER, BUSY, FAILED.

MDR logs

Message Detail Record is a SIP messages log.

MDR records are added to a log file located atlogs/cdr/mdr.log. A new log file is created every 24 hours. Data are recorded as a CSV file, so they can be
easily processed.

Field names are not recorded to the file.

Record format:

dat e, nsgld, fromto, di sposition

Record example:

Fri Dec 26 15:26:16 NOVT 2014, nul |, A006, AOO5, RECEI VED

Field Description

date Date and time of the message

msgld = Message identifier. Is present only in message/cpim messages if isimdnRequired=true (see Web Call Server - Call Flow documentation,
parameters of the passed messages in thesendMessagemethod are described there).

from SIP from

to SIP to

_d_ispos Message result: RECEIVED, SENT, FAILED.
ten RECEIVED- the message is received.

SENT- the message is sent.

FAILED- there were an error while sending the message.

You can also gather any message statistics and their statuses you need using WCS REST API. See Web Call Server - Call Flow documentation that
describes all methods and data sets that WCS sends via REST when it processes messages.

SDR logs

Stream Detail Record is a stream publishing and playing session logs.

SDR records are written to thesdr.logfile located atlogs/cdr. A new log file is created every 24 hours. Data are recorded as a CSV file, so they can be
easily processed.

Field names are not recorded to the file.

Record format:

start; nedi aProvi der; nanme; medi aSessi onl d; dur ati on; di sposi tion;info;type; subscribers;

Record example:

2015-11-11 08: 36: 13; Fl ash; stream Bob; 5¢2d75¢c0- 7d87- 421d- aa93- 2732c48d8eaa; 00: 00: 48; UNPUBLI SHED; ; PUBLI SH; 3;

Field Description
start Date and time the session started

mediaProvider | The media used in WCS JavaScript API:WebRTC, Flash

name Name of the published / played stream
mediaSessionld = Media session identifier
duration Duration of the session
disposition Session result: UNPUBLISHED, STOPPED, FAILED
UNPUBLISHED- publishing of the stream was stopped
STOPPED- playing of the stream was stopped
FAILED- incorrect session end
info If disposition==FAILED, this field contains the description of the reason
type PUBLISHif publishing the stream
SUBSCRIBEIf playing the stream

subscribers The number of subscribers in case of publishing the stream; 0 if playing the stream

CONNDR logs

Connection Detail Record is a WebSocket sessions log.

CONNDR records are written to thesdr.loglog file located atlogs/cdr. A new log file is created every 24 hours. Data are recorded as a CSV file, so they
can be easily processed.

Field names are not recorded to the file.

Record format:

start; nedi aSessi onl d; di sposi tion;info; duration;

Record example:

2018-04-25 19:29: 08; /5. 44. 168. 45: 52199/ 95. 191. 131. 64: 8443; DI SCONNECTED; Nor mal di sconnect ; 17;

Field Description
start Date and time the session started
mediaSessionld | Media session identifier
disposition Session result: DISCONNECTED, FAILED
DISCONNECTED- the session ended by client's initiative
FAILED- incorrect session end
info Contains information about the session end

duration Duration of the session

GC logs

By default garbage collector log files are located in /usr/local/FlashphonerWebCallServer/logs directory.

| ogs
---- gc-core-2018-12-18_20-02.10g
---- gc-core-2018-12-18_19-56.1 og

The location and prefix of the log files can be configured inwcs-core.propertiesfile.

To enable log rotation by the JVM, the following options can be added to wcs-core.properties:

https://docs.flashphoner.com/display/WCS5EN/Settings+file+wcs-core.properties
https://docs.flashphoner.com/display/WCS5EN/Settings+file+wcs-core.properties

- XX: +UseGCLogFi | eRot ati on
- XX: Nunber O GCLogFi | es=10
- XX: GCLogFi | eSi ze=2M

Then the log files will have names like

| ogs

---- gc-core.l0g2018-12-14_18-57.10g.0

---- gc-core. | 0g2018-12-14_18-57.10g. 1

---- gc-core.l 0g2018-12-14_18-57.10g.2

---- gc-core.l0g2018-12-14_18-57.10g.3

---- gc-core.l 0g2018-12-14_18-57.10g. 4. current

File with suffix 'current' is the file currently being recorded.

To remove creation time from log file names, remove date from variable GC_SUFFIX in bin/setenv.sh:

GC_SUFFI X="". 1 0g"

Then the log files will have names like

| ogs

---- gc-core.log.0

---- gc-core.log. 1

---- gc-core.log. 2. current

	WCS Core logs

