
Stream mixer

Overview
Supported protocols of input streams
Output stream control capabilities
Automatically create a mixer when publishing the stream
Operation flowchart

REST queries
REST-methods and response statuses
Parameters
Sending the REST query to the WCS server

Configuration
Automatic mixer creation configuration
Audio and video mixing configuration
Mixer output stream bufferization
Changing bitrate of mixer output stream
Mixer output stream sound management
Using custom lossless videoprocessor for incoming streams handling
Mixer output stream layout management

Custom mixer layout implementation
Quick manual on testing
Call flow
Known issues

Overview
WCS allows mixing streams of active broadcasts. The output stream of the mixer can be , or using any of technologies recorded played republished
supported by WCS.
Mixing is controlled usingsettingsandREST API.

Supported protocols of input streams

WebRTC
RTMP
RTSP

Output stream control capabilities

The mixer allows custom placing of video streams in the output frame. The stream with a certain name (by default desktop) is seen as screensharing and
hence is placed in the center of the frame:

https://docs.flashphoner.com/display/WCS5EN/Stream+recording
https://docs.flashphoner.com/display/WCS5EN/Playing+a+video+stream+from+the+server
https://docs.flashphoner.com/display/WCS5EN/Republishing+a+video+stream

Automatically create a mixer when publishing the stream

If the name of the published RTMP stream has the '#' symbol, the server treats everything after that symbols as the name of the mixer that will be
created when the stream is published. For instance, for the user1#room1 stream, the room1 mixer is created, and the stream is added to this mixer then.
The stream name can also include the screen sharing keyword, for example, user1#room1#desktop

Operation flowchart

1.
2.
3.
4.
5.
6.
7.
8.
9.

The browser connects to the server via the Websocket protocol and sends the publish command.
The browser sends the WebRTC stream1 to the server.
Flash Player establishes a connection via RTMP and sends the publish command.
Flash Player sends the RTMP stream2 to the server.
The REST client creates a mixer with the output stream3 using the query: /mixer/startup
The REST client adds stream1 to the mixer
The REST client adds stream2 to the mixer
The second browser establishes a connection via Websocket and sends the play command.
The second browser receives the WebRTC audio stream stream3 and plays that stream on the page.

REST queries
A REST-query must be an HTTP/HTTPS POST query in the following form:

HTTP:http://streaming.flashphoner.com:8081/rest-api/mixer/startup
HTTPS:https://streaming.flashphoner.com:8444/rest-api/mixer/startup

Here:

streaming.flashphoner.com- is the address of the WCS server
8081 - the standard REST / HTTP port of the WCS server
8444- the standard HTTPS port
rest-api- the required prefix
mixer/startup- the REST-method used

REST-methods and response statuses

REST-
method

Example of REST query Example of response Response
statuses

Description

/mixer
/startup {

 "uri": "mixer://mixer1",
 "localStreamName": "stream3",
 "hasVideo": "false"
}

200 - OK

409 - Conflict

500 -
Internal error

Creates a mixer the provided
stream is published for

/mixer/add
{
 "uri": "mixer://mixer1",
 "remoteStreamName": "stream1"
}

200 - OK

404 - Mixer
not found

404 -
Stream not
found

500 -
Internal error

Add the RTMP stream to the
mixer

/mixer
/remove {

 "uri": "mixer://mixer1",
 "remoteStreamName": "stream1"
}

200 - OK

404 - Mixer
not found

404 -
Stream not
found

500 -
Internal error

Remove the RTMP stream
from the mixer

/mixer
/find_all {

"localMediaSessionId": "ce92b134-
2468-4460-8d06-1ea3c5aabace",
"remoteMediaSessionId": null,
"localStreamName": "mixer1",
"remoteStreamName": null,
"uri": "mixer://mixer1",
"status": "PROCESSED_LOCAL",
"mediaSessions": [
 "95bf2be8-f459-4f62-9a7f-
c588f33e0ad3",
 "693781de-cada-4589-abe1-
c3ee55c66901"
],
}

200 - OK

404 - Not
found

500 -
Internal error

Find all mixers

/mixer
/terminate {

 "uri": "mixer://mixer1"
}

200 - OK

404 - Not
found

500 -
Internal error

Terminate operation of the
mixer

/stream
/startRecor
ding

{
 "mediaSessionId": "23d07fa1-
3c74-4d6f-a0de-9b4bf83ce665"
}

200 - OK

404 - Not
found

500 -
Internal error

Start recording of the stream
in the given media session

/stream
/stopRecor
ding

{
 "mediaSessionId": "23d07fa1-
3c74-4d6f-a0de-9b4bf83ce665"
}

200 - OK

404 - Not
found

500 -
Internal error

Stop recording the stream in
the given media session

Parameters

Parameter name Description Example

uri Unique identifier of the mixer mixer://mixer1

localStreamName Name of the output stream of the mixer stream3

hasVideo Mix video (true) or audio only (false) false

remoteStreamName Name of the stream added to the mixer stream1

rtmp://rtmp.flashphoner.com:1935/live/rtmp_stream1

mediaSessionId Media session identifier ce92b134-2468-4460-8d06-1ea3c5aabace

status Stream status PROCESSED_LOCAL

Sending the REST query to the WCS server

To send the REST query to the WCS server use a .REST-client

Configuration
Mixing can be configured using the following parameters in the settings fileflashphoner.properties

Parameter Default
value

Description

mixer_video_desktop_layout_inline_pa
dding

10 Distance (padding) between windows of video streams in the lower line (below the screen
sharing window)

mixer_video_desktop_layout_padding 30 Distance (padding) between the screen sharing window and the lower line (the rest streams)

mixer_video_enabled true Enables (by default) or disables video mixing

mixer_video_grid_layout_middle_padd
ing

10 Distance between windows of video streams in one line (without screen sharing window)

mixer_video_grid_layout_padding 30 Distance between lines of windows (without screen sharing window)

mixer_video_height 720 The image height of the mixer output stream

mixer_video_layout_desktop_key_word desktop Keyword for the screen sharing stream

mixer_video_width 1280 The image width of the mixer output stream

record_mixer_streams false Turns on or off (default) recording of all mixer output streams

Automatic mixer creation configuration

Automatic creation of mixers for streams with the '#' symbol in their name requires the application that handles input streams to register the handler:
'com.flashphoner.server.client.handler.wcs4.FlashRoomRecordingStreamingHandler'. Registering the handler can be done using thecommand line

. For instance, for the flashStreamingApp application used to publish incoming RTMP streams this can be done with the following command:interface

update app -m com.flashphoner.server.client.handler.wcs4.FlashRoomRecordingStreamingHandler -c com.flashphoner.
server.client.handler.wcs4.FlashStreamingCallbackHandler flashStreamingApp

You can read more about managing applications using the command line of the WCS server .here

Audio and video mixing configuration

By default, both video and audio streams are mixed. If audio only mixing is necessary, it should be set on mixer creation

{
 "uri": "mixer://mixer1",
 "localStreamName": "stream3",
 "hasVideo": "false"
}

To switch off video mixing for all streams, this parameter should be set in fileflashphoner.properties

mixer_video_enabled=false

In this case video mixing can be switched on for certain mixer on its creation.

https://chrome.google.com/webstore/detail/advanced-rest-client/hgmloofddffdnphfgcellkdfbfbjeloo
https://docs.flashphoner.com/display/WCS5EN/Settings+file+flashphoner.properties
https://docs.flashphoner.com/display/WCS5EN/Core+command+line+interface
https://docs.flashphoner.com/display/WCS5EN/Core+command+line+interface
https://docs.flashphoner.com/display/WCS5EN/Applications+management
https://docs.flashphoner.com/display/WCS5EN/Settings+file+flashphoner.properties

Mixer output stream bufferization

In some cases, mixer output stream bufferization is needed. This feature is enabled with the following parameter in fileflashphoner.properties

mixer_out_buffer_enabled=true

The buffer size is defined in milliseconds with parameter

mixer_out_buffer_start_size=400

In this case, the buffer size is 400 ms.

Stream data fetching from buffer and sending period is defined in milliseconds with parameter

mixer_out_buffer_polling_time=20

In this case, the period is 20 ms.

Changing bitrate of mixer output stream

When OpenH264 codec is used for transcoding, it is possible to change bitrate of mixer output stream with the following parameterinflashphoner.
fileproperties

mixer_video_bitrate_kbps=2000

By default, mixer output stream bitrate is set to 2 Mbps. If a channel bandwith between server and viewer is not enough, bitrate can be reduced, for
example

encoder_priority=OPENH264
mixer_video_bitrate_kbps=1500

If picture quality with default bitrate is low, or distortion occurs, it is recommended to rise mixer outout stream bitrate to 3-5 Mbps

encoder_priority=OPENH264
mixer_video_bitrate_kbps=5000

Mixer output stream sound management

By default, mixer output stream sound is encoded to Opus with sample rate 48 kHz. These settings may be changed using the parameters inflashphoner.
file. For example, to use mixer output stream in SIP call the following value can be set:properties

audio_mixer_output_codec=pcma
audio_mixer_output_sample_rate=8000

In this case, sound will be encoded to PCMA (alaw) with sample rate 8 kHz.

Using custom lossless videoprocessor for incoming streams handling

To handle mixer incoming streams, if additional bufferizing or audio and video tracks syncronizing is required for example, the custom lossless
videoprocessor may be used. This feature is enabled with the following parameter in fileflashphoner.properties

mixer_lossless_video_processor_enabled=true

The maximum size of mixer buffer in milliseconds is set with this parameter

mixer_lossless_video_processor_max_mixer_buffer_size_ms=200

https://docs.flashphoner.com/display/WCS5EN/Settings+file+flashphoner.properties
https://docs.flashphoner.com/display/WCS5EN/Settings+file+flashphoner.properties
https://docs.flashphoner.com/display/WCS5EN/Settings+file+flashphoner.properties
https://docs.flashphoner.com/display/WCS5EN/Settings+file+flashphoner.properties
https://docs.flashphoner.com/display/WCS5EN/Settings+file+flashphoner.properties
https://docs.flashphoner.com/display/WCS5EN/Settings+file+flashphoner.properties

By default, maximum mixer buffer size is 200 ms. After filling this buffer, the custom lossless videoprocessor uses its own buffer and waits for mixer
buffer freeing. The period of mixer buffer checking is set in milliseconds with this parameter

mixer_lossless_video_processor_wait_time_ms=20

By default, the mixer buffer checking period is 20 ms.

Note that using the custom lossless videoprocessor may degrade realtime perfomance.

When custom lossless videoprocessor is used, it is necessary to stop mixer with REST query /mixer/terminate to free all consumed resources. Mixer can
be stopped also by stopping all incoming streams, in this case mixer will stop when following timeout in milliseconds expires

mixer_idle_timeout=60000

By default, mixer will stop after 60 seconds if there are no active incoming streams.

Mixer output stream layout management

By default, three mixer output stream layouts are implemented:

1. Grid layout

This layout can be enabled with the following parameter in fileflashphoner.properties

mixer_layout_class=com.flashphoner.media.mixer.video.presentation.GridLayout

2. Zero padding grid layout

https://docs.flashphoner.com/display/WCS5EN/Settings+file+flashphoner.properties

This layout can be enabled with the following parameter

mixer_layout_class=com.flashphoner.media.mixer.video.presentation.CenterNoPaddingGridLayout

and works for input streams of equal resolution with the same aspect ratio only

3. Desktop (screen sharing) layout

This layout is enabled if one of mixer input streams has a name defined in the following parameter

mixer_video_layout_desktop_key_word=desktop

By default, name is used for screen sharing stream.desktop

Custom mixer layout implementation

For more fine tuning of mixer layout, custom Java class should be developed to implement interface, for exampleIVideoMixerLayout

TestLayout.java

package com.flashphoner.mixerlayout;

import com.flashphoner.sdk.media.IVideoMixerLayout;
import com.flashphoner.sdk.media.YUVFrame;
import java.awt.*;
import java.util.ArrayList;

public class TestLayout implements IVideoMixerLayout {

 private static final int PADDING = 5;

 @Override
 public Layout[] computeLayout(YUVFrame[] yuvFrames, String[] strings, int canvasWidth, int canvasHeight) {
 ArrayList<IVideoMixerLayout.Layout> layout = new ArrayList<>();
 for (int c = 0; c < yuvFrames.length; c++) {
 Point prevPoint = new Point();
 Dimension prevDimension = new Dimension(canvasWidth, canvasHeight);
 if (layout.size() > 0) {
 prevPoint.setLocation(layout.get(c-1).getPoint());
 prevDimension.setSize(layout.get(c-1).getDimension());
 }
 Point currentPoint = new Point((int) (prevPoint.getX()+prevDimension.getWidth()+PADDING),
 (int)(prevPoint.getY()+prevDimension.getHeight()));
 layout.add(new IVideoMixerLayout.Layout(currentPoint, new Dimension(canvasWidth/yuvFrames.length,
 canvasHeight/yuvFrames.length), yuvFrames[c]));
 }
 return layout.toArray(new IVideoMixerLayout.Layout[layout.size()]);
 }
}

Then the class should be complied into byte code. To do this, create folder tree according to TestLayout class package name

mkdir -p com/flashphoner/mixerlayout

and execute the command

javac -cp /usr/local/FlashphonerWebCallServer/lib/tbs-flashphoner.jar ./com/flashphoner/mixerlayout/TestLayout.
java

Now, pack the code compiled to jar file

jar -cf testlayout.jar ./com/flashphoner/mixerlayout/TestLayout.class

and copy this file to WCS libraries folder

cp testlayout.jar /usr/local/FlashphonerWebCallServer/lib

To use custom mixer layout class, set it to the following parameter in fileflashphoner.properties

mixer_layout_class=com.flashphoner.mixerlayout.TestLayout

and restart WCS.

With this custom layout, mixer output stream for three input streams will look like:

https://docs.flashphoner.com/display/WCS5EN/Settings+file+flashphoner.properties

Quick manual on testing
1. For this test we use:

the demo server at demo.flashphoner.com;
the Chrome browser and the to send queries to the server;REST-client
the web application to publish input streams of the mixer;Two Way Streaming
the web application to play the output stream of the mixer.Player

2. Open the page of the Two Way Streaming application. Publish the stream named stream1:

https://chrome.google.com/webstore/detail/advanced-rest-client/hgmloofddffdnphfgcellkdfbfbjeloo
https://demo.flashphoner.com/client2/examples/demo/streaming/two_way_streaming/two_way_streaming.html
https://mixer-demo.flashphoner.com:8888/client2/examples/demo/streaming/player/player.html

3. In another tab open the page of the Two Way Streaming application. Publish the stream named desktop:

4. Open the REST client. Send the /mixer/startup query and specify the URI of the mixer the output stream name stream3 in its mixer://mixer1 and
parameters:

mixer://mixer1 and

5. Send the /mixer/add query and specify the URI of the mixer the input stream name stream1 in its parameters:mixer://mixer1 and

mixer://mixer1 and

6. Open the Player web application, specify the name of the output stream of the mixer stream3 in the Stream field and click Start:

7. Send /mixer/add and specify the URI of the mixer the input stream name desktop in its parameters:mixer://mixer1 and

mixer://mixer1 and

8. In the output stream of the mixer you should see the desktop stream that imitates screen sharing and the stream stream1:

Call flow
Below is the call flow when using the mixer.

1. Publishing of the stream1WebRTC stream

2. Sending the WebRTC stream to the server

3. Publishing the stream2RTMP stream

https://docs.flashphoner.com/display/WCS5EN/From+a+web+camera+in+a+browser+via+WebRTC#FromawebcamerainabrowserviaWebRTC-Callflow
https://docs.flashphoner.com/display/WCS5EN/By+means+of+Flash+Player+via+RTMP#BymeansofFlashPlayerviaRTMP-Callflow

4. Sending the RTMP stream to the server

5. Sending the /mixer/startup query to create the mixer://stream3 mixer with the output stream3

http://demo.flashphoner.com:9091/rest-api/mixer/startup
{
 "uri": "mixer://stream3",
 "localStreamName": "stream3"
}

6. Sending the /mixer/add query to add stream1 to the mixer://stream3 mixer

http://demo.flashphoner.com:9091/rest-api/mixer/add
{
 "uri": "mixer://stream3",
 "localStreamName": "stream3"
 "remoteStreamName": "stream1"
}

7. Sending the /mixer/add query to add stream2 to the mixer://stream3 mixer

http://demo.flashphoner.com:9091/rest-api/mixer/add
{
 "uri": "mixer://stream3",
 "localStreamName": "stream3"
 "remoteStreamName": "stream2"
}

8. Playing the WebRTC stream stream3

9. Sending the WebRTC audio stream to the client

Known issues
1. A mixer is not created is the name of the mixer contains symbols restricted for URI.

Symptoms: a mixer with the name like test_mixer does not create.

Solution: do not use disallowed symbols in the name of a mixer or a stream, especially if automatic mixer creation option is enabled. For instance, the
name

user_1#my_room

cannot be used.
If streams of chat rooms are mixed, room names also cannot use restricted symbols.

2. Mixer output stream will be empty if transcoding is enabled on server on demand only.

Symptoms: video streams mixer created successfully, but black screen is played in mixer output stream.

Solution: for stream mixer to work transcoding should be enabled on server with the following parameterin fileflashphoner.properties

streaming_video_decoder_fast_start=true

https://docs.flashphoner.com/display/WCS5EN/Settings+file+flashphoner.properties

	Stream mixer

