
From the computer screen (screen sharing) in a browser via
WebRTC

Overview
Supported platforms and browsers
Operation flowchart

Quick manual on testing
Capturing a video stream from the computer screen and preparing for publishing

Call flow
To developer

Extension for Google Chrome with publication in Chrome Store
Create a Google account
Register as Chrome Web Store Developer
Customization for your domain
Package the extension
Publish the extension
Extension Inline Installation

Configuring the client
Media source parameters

Parameter list
System sound capture in Chrome browser
Capture source (screen or window) management in Firefox browser
Screen sharing without extension

Firefox browser
Chromium based browsers
Safari browser in MacOS
Known limits

Known issues

Overview

Supported platforms and browsers

Chrome Firefox

Windows + +

Mac OS + +

Operation flowchart

1. The browser establishes a connection to the server via the Websocket protocol and sends the publish command.

2. The browser captures the screen and sends a WebRTC stream to the server.

3. The second browser establishes a connection also via Websokcet and sends the play command.

4. The second browser receives the WebRTC stream and plays the stream on the page.

Quick manual on testing

Capturing a video stream from the computer screen and preparing for publishing

1. For the test we use the demo server at and the Screen Sharing web application in the Chrome browserdemo.flashphoner.com

https://demo.flashphoner.com/client2/examples/demo/streaming/screen-sharing/screen-sharing.html

http://demo.flashphoner.com
https://demo.flashphoner.com/client2/examples/demo/streaming/screen-sharing/screen-sharing.html

2. Click the "Start" button. The browser asks for permission to access the screen, and screen capturing starts, then the stream is publishing:

3. Make sure the stream is sent to the server and the system operates normally in chrome://webrtc-internals

4. Open Two Way Streaming in a new window, click Connect and specify the stream id, then click Play.

5. Playback diagrams in chrome://webrtc-internals

chrome://webrtc-internals
chrome://webrtc-internals

Call flow
Below is the call flow when using the Screen Sharing example

screen-sharing.html

screen-sharing.js

https://github.com/flashphoner/flashphoner_client/blob/584ddddd39b3eed3d1d04ef0f3900a9dc4d0f355/examples/demo/streaming/screen-sharing/screen-sharing.html
https://github.com/flashphoner/flashphoner_client/blob/584ddddd39b3eed3d1d04ef0f3900a9dc4d0f355/examples/demo/streaming/screen-sharing/screen-sharing.js

1. Checking if the extension install is required

Browser.isFirefox(), Browser.isChrome();code

 if (Browser.isFirefox()) {
 $("#installExtensionButton").show();
 ...
 } else if (Browser.isChrome()) {
 $('#mediaSourceForm').hide();
 interval = setInterval(function() {
 chrome.runtime.sendMessage(extensionId, {type: "isInstalled"}, function (response) {
. if (response) {
 $("#extension").hide();
 clearInterval(interval);
 onExtensionAvailable();
 } else {
 (inIframe()) ? $("#installFromMarket").show() : $("#installExtensionButton").show();
 }
 });
 }, 500);
 } else {
 $("#notify").modal('show');
 return false;
 }

https://github.com/flashphoner/flashphoner_client/blob/584ddddd39b3eed3d1d04ef0f3900a9dc4d0f355/examples/demo/streaming/screen-sharing/screen-sharing.js#L17

2. Establishing a connection to the server.

Flashphoner.createSession();code

 Flashphoner.createSession({urlServer: url}).on(SESSION_STATUS.ESTABLISHED, function(session){
 //session connected, start streaming
 startStreaming(session);
 }).on(SESSION_STATUS.DISCONNECTED, function(){
 setStatus(SESSION_STATUS.DISCONNECTED);
 onStopped();
 }).on(SESSION_STATUS.FAILED, function(){
 setStatus(SESSION_STATUS.FAILED);
 onStopped();
 });

3. Receiving from the server an event confirming successful connection.

ConnectionStatusEvent ESTABLISHEDcode

 Flashphoner.createSession({urlServer: url}).on(SESSION_STATUS.ESTABLISHED, function(session){
 //session connected, start streaming
 startStreaming(session);
 ...
 });

4. Publishing the stream.

stream.publish();code

 session.createStream({
 name: streamName,
 display: localVideo,
 constraints: constraints
 }).on(STREAM_STATUS.PUBLISHING, function(publishStream){
 ...
 }).on(STREAM_STATUS.UNPUBLISHED, function(){
 ...
 }).on(STREAM_STATUS.FAILED, function(stream){
 ...
 }).publish();

5. Receiving from the server an event confirming successful publishing.

StreamStatusEvent, статус PUBLISHINGcode

https://github.com/flashphoner/flashphoner_client/blob/584ddddd39b3eed3d1d04ef0f3900a9dc4d0f355/examples/demo/streaming/screen-sharing/screen-sharing.js#L116
https://github.com/flashphoner/flashphoner_client/blob/584ddddd39b3eed3d1d04ef0f3900a9dc4d0f355/examples/demo/streaming/screen-sharing/screen-sharing.js#L116
https://github.com/flashphoner/flashphoner_client/blob/584ddddd39b3eed3d1d04ef0f3900a9dc4d0f355/examples/demo/streaming/screen-sharing/screen-sharing.js#L150
https://github.com/flashphoner/flashphoner_client/blob/584ddddd39b3eed3d1d04ef0f3900a9dc4d0f355/examples/demo/streaming/screen-sharing/screen-sharing.js#L150

 session.createStream({
 name: streamName,
 display: localVideo,
 constraints: constraints
 }).on(STREAM_STATUS.PUBLISHING, function(publishStream){
 ...
 setStatus(STREAM_STATUS.PUBLISHING);
 //play preview
 session.createStream({
 name: streamName,
 display: remoteVideo
 }).on(STREAM_STATUS.PLAYING, function(previewStream){
 document.getElementById(previewStream.id()).addEventListener('resize', function(event){
 resizeVideo(event.target);
 });
 //enable stop button
 onStarted(publishStream, previewStream);
 }).on(STREAM_STATUS.STOPPED, function(){
 publishStream.stop();
 }).on(STREAM_STATUS.FAILED, function(stream){
 //preview failed, stop publishStream
 if (publishStream.status() == STREAM_STATUS.PUBLISHING) {
 setStatus(STREAM_STATUS.FAILED, stream);
 publishStream.stop();
 }
 }).play();
 }).on(STREAM_STATUS.UNPUBLISHED, function(){
 ...
 }).on(STREAM_STATUS.FAILED, function(stream){
 ...
 }).publish();

6. Sending the audio-video stream via WebRTC

7. Stopping publishing the stream.

stream.stop();code

https://github.com/flashphoner/flashphoner_client/blob/584ddddd39b3eed3d1d04ef0f3900a9dc4d0f355/examples/demo/streaming/screen-sharing/screen-sharing.js#L176

 session.createStream({
 name: streamName,
 display: localVideo,
 constraints: constraints
 }).on(STREAM_STATUS.PUBLISHING, function(publishStream){
 /*
 * User can stop sharing screen capture using Chrome "stop" button.
 * Catch onended video track event and stop publishing.
 */
 document.getElementById(publishStream.id()).srcObject.getVideoTracks()[0].onended = function (e) {
 publishStream.stop();
 };
 ...
 setStatus(STREAM_STATUS.PUBLISHING);
 //play preview
 session.createStream({
 name: streamName,
 display: remoteVideo
 }).on(STREAM_STATUS.PLAYING, function(previewStream){
 ...
 }).on(STREAM_STATUS.STOPPED, function(){
 publishStream.stop();
 }).on(STREAM_STATUS.FAILED, function(stream){
 //preview failed, stop publishStream
 if (publishStream.status() == STREAM_STATUS.PUBLISHING) {
 setStatus(STREAM_STATUS.FAILED, stream);
 publishStream.stop();
 }
 }).play();
 ...
 }).publish();

8. Receiving from the server an event confirming unpublishing of the stream.

StreamStatusEvent, статус UNPUBLISHEDcode

 session.createStream({
 name: streamName,
 display: localVideo,
 constraints: constraints
 }).on(STREAM_STATUS.PUBLISHING, function(publishStream){
 ...
 }).on(STREAM_STATUS.UNPUBLISHED, function(){
 setStatus(STREAM_STATUS.UNPUBLISHED);
 //enable start button
 onStopped();
 }).on(STREAM_STATUS.FAILED, function(stream){
 ...
 }).publish();

To developer
The screen sharing function can be used to publish a video stream that demonstrates the desktop or an application window.
WCS API uses a Chrome extensions for screen sharing. Firefox browser since version 52 does not require an extension.

Extension for Google Chrome with publication in Chrome Store

Source code for the extension is available by the following link:

Chrome Screen Sharing Extension

Create a Google account

1. Go to and click ‘Sign in’ buttongoogle.com

https://github.com/flashphoner/flashphoner_client/blob/584ddddd39b3eed3d1d04ef0f3900a9dc4d0f355/examples/demo/streaming/screen-sharing/screen-sharing.js#L185
https://github.com/flashphoner/flashphoner_client/tree/89281428578df670f19be4f059d8c227885cb994/examples/demo/dependencies/screen-sharing/chrome-extension
http://google.com

2. On the ‘Sign in’ page, click ‘Create account’ link

3. ‘Create your Google Account’ page will be opened
Fill the required fields and click ‘Next step’ button to create the account.

Register as Chrome Web Store Developer

1. Sign in to with the created Google accountChrome Developer Dashboard
2. Pay a one-time $5 developer signup fee

https://chrome.google.com/webstore/developer/dashboard

Customization for your domain

Follow the procedures described below to use the extensions with your domain.
Edit manifest file manifest.json of the Chrome extension.

Change:

name
author
description
homepage_url
under "externally_connectable":"matches" change flashphoner.com to your domain

Save your icons for the extension to chrome-extension directory and edit the file names in "icons" and "web_accessible_resources". (For more
information, see and .)Manifest - Icons Supplying Images

Package the extension

Package files from chrome-extension folder into ZIP archive.

Publish the extension

1. Sign in to Chrome Developer Dashboard
2. In the dashboard, click ‘Add new item’ button

https://developer.chrome.com/apps/manifest/icons
https://developer.chrome.com/webstore/images
https://chrome.google.com/webstore/developer/dashboard

3. Accept the developer agreement

4. On the ‘Upload’ page, choose the chrome-extension.zip file and click ‘Upload’ button

5. When the extension is uploaded, the page for editing the extension draft will be opened
Edit the extension as required and click ‘Save draft and return to dashboard’ button at the bottom of the page.

6. The extension will appear in the developer dashboard
Click ‘Publish’ link to publish the extension.

A published extension will have status ‘Published’ as on the image below.

For more information, see .Chrome Web Store Publishing Tutorial

Extension Inline Installation

Extension installation can be initiated by clicking a link on the Screen Sharing client page.
Note that the extension to be installed should be customized, published and approved before inline installation can be used.

Follow the procedures described below to use the client with your extensions.

1. When publishing, select ‘Inline Install’ option

2. Verify and add website with your domain to the extension
- Click ‘Add a New Site’

https://developer.chrome.com/webstore/publish

- Google Search Console page will open in a new tab
Enter URL with your domain.

- A page with the instruction for the site verification will open
Follow the procedure steps and click ‘Verify’ button.

- If the verification is passed, a page confirming successful verification will be opened

- The website will appear in the list in the extension options and the extension can be associated with the site

Configuring the client

Edit Screen-sharing.html and Screen-sharing.js

In Screen-sharing.html the chrome-webstore-item parameter should point to your extension in the Chrome Store
In Screen-sharing.js replace the value of the chromeScreenSharingExtensionId parameter to the ID of your extension

To get the ID of the extension, click ‘More info’ of this extension in .Chrome Developer Dashboard

Media source parameters

To configure screen media source parameters, use parameters of the Configuration object passed to the init() method upon initializing of the Flashphoner
API instance.

var f = Flashphoner.getInstance();
var configuration = new Configuration();
....
configuration.screenSharingVideoWidth = 1920;
configuration.screenSharingVideoHeight = 1080;
configuration.screenSharingVideoFps = 10;
f.init(configuration);

Parameter list

Parameter Description

screenSharingVideoWidth Screen media source width

screenSharingVideoHeight Screen media source height

screenSharingVideoFps Screen media source framerate

These parameters set marginal values of resolution and framerate (FPS). For instance, screenSharingVideoWidth = 1080 means the width of the source
video cannot be more than 1080 pixels, but can be less. (i.e. when sending a stream of an app window that has the width of 720 pixels).

System sound capture in Chrome browser

In Chrome browser, there is ability to translate audio stream from system sound source while capturing a screen. The feature is useful in screencasting,
for example. To capture system sound, set "Share audio" option in Chrome extension dialog window while choosing streaming source window or
browser tab:

https://chrome.google.com/webstore/developer/dashboard

Chrome extension :code

 callback({sourceId: sourceId, systemSoundAccess: opts.canRequestAudioTrack});

Capture source (screen or window) management in Firefox browser

In Firefox browser, all the screen or some program window can be chosen as video stream source with constraints.video.mediaSource parameter

code:

 constraints.video.type = "screen";
 if (Browser.isFirefox()){
 constraints.video.mediaSource = $('#mediaSource').val();
 }
 session.createStream({
 name: streamName,
 display: localVideo,
 constraints: constraints
 })

Source selection interface example:

https://github.com/flashphoner/flashphoner_client/blob/89281428578df670f19be4f059d8c227885cb994/examples/demo/dependencies/screen-sharing/chrome-extension/background-script.js#L21
https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/screen-sharing/screen-sharing.js#L139

Program window capture

Screen capture

Screen sharing without extension

Firefox browser

Firefox browser does not use extension to share screen

Chromium based browsers

Since Chrome 73 and Flashphoner WebSDK screen sharing is possible without extension. To do this 0.5.28.2753.86 withoutExtconstraints.video.
 parameter should be passed when stream is createdension

code

 if ($("#woChromeExtension").prop('checked')) {
 constraints.video.withoutExtension = true;
 }

Safari browser in MacOS

Since Safari 13and Flashphoner WebSDK screen sharing is possible without extension. To do this 0.5.28.2753.152 withoutExteconstraints.video.
 parameter should be passed when stream is creatednsion

code

 if ($("#woChromeExtension").prop('checked') || Browser.isSafari()) {
 constraints.video.withoutExtension = true;
 }

Known limits

1. In Chrome browser, picture resolution and FPS are set by source dimensions (screen, windows or browser tab) and by real picture updating speed,
not by constraints/ This issue is fixed sinceFlashphoner WebSDK build0.5.28.2753.152

2. System sound capture only works starting from Crome 74

Known issues
1.If the web applicaiton is inside an iframe element, publishing of the video stream may fail.

Symptoms: IceServer errors in the browser console.
Solution: put the app out of iframe to an individual page.

2. If publishing of the stream goes under Windows 10 or Windows 8 and hardware acceleration is enabled in the Google Chrome browser, bitrate
problems are possible.

Symptoms: low quality of the video, muddy picture, bitrate shown in is less than 100 kbps.chrome://webrtc-internals
Solution: turn off hardware acceleration in the browser, switch the browser of the server to use the VP8 codec.

3. All streams captured from the screen stop if any one of them stops

Symptoms: while multiple streams are captured from the screen on one tab in the Chrome browser, if one stream is stopped, all streams stop.
Solution: cache tracks by the source of the video and stop them along with the last stream that uses that source, for example:

https://flashphoner.com/downloads/builds/flashphoner_client/wcs_api-2.0/flashphoner-api-0.5.28.2753-218c188ea896656b1ca142f02b4f58bf09bd8bf1.tar.gz
https://github.com/flashphoner/flashphoner_client/blob/584ddddd39b3eed3d1d04ef0f3900a9dc4d0f355/examples/demo/streaming/screen-sharing/screen-sharing.js#L144
https://flashphoner.com/downloads/builds/flashphoner_client/wcs_api-2.0/flashphoner-api-0.5.28.2753-44fe1b1556caa6e3a0fc18fe71114d4996afdc2a.tar.gz
https://github.com/flashphoner/flashphoner_client/blob/c8acaca916fe742166f0c5c24f6dd7e4f8160a42/examples/demo/streaming/screen-sharing/screen-sharing.js#L195
https://flashphoner.com/downloads/builds/flashphoner_client/wcs_api-2.0/flashphoner-api-0.5.28.2753-44fe1b1556caa6e3a0fc18fe71114d4996afdc2a.tar.gz
chrome://webrtc-internals

 var handleUnpublished = function(stream) {
 console.log("Stream unpublished with status " + stream.status());
 //get track label
 var video = document.getElementById(stream.id() + LOCAL_CACHED_VIDEO);
 var track = video.srcObject.getVideoTracks()[0];
 var label = track.label;
 //see if someone using this source
 if (countDisplaysWithVideoLabel(label) > 1) {
 //remove srcObject but don't stop tracks
 pushTrack(track);
 video.srcObject = null;
 } else {
 var tracks = popTracks(track);
 for (var i = 0; i < tracks.length; i++) {
 tracks[i].stop();
 }
 }
 //release resources
 Flashphoner.releaseLocalMedia(streamVideoDisplay);
 //remove stream display
 display.removeChild(streamDisplay);
 session.disconnect();
 };

4. Chrome browser stops sending video traffic when applicatiion window captured is minimized

Symptoms: if an application window captured is minimized to task bar, the stream freezes at subscribers side, and publishing may fail by RTP activity

Solution: in builds before disable RTP activity control for all the streams5.2.1784

rtp_activity_video=false

in builds since disable video RTP activity control by stream name template, for example5.2.1784

rtp_activity_video_exclude=.*-screen$

https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.1784.tar.gz
https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.1784.tar.gz

	From the computer screen (screen sharing) in a browser via WebRTC

