
By means of Flash Player via RTMP

Overview
Supported platforms
Operation flowchart

Quick manual on testing
Capturing a video stream from the web camera and preparing to publishing

Call flow
Setting a server application while RTMP stream publishing
Known issues

Overview

Supported platforms

Adobe Flash

Windows +

Mac OS +

Linux +

Operation flowchart

1. Flash Player connects to the server via the RTMP protocol and sends the publish command.

2. Flash Player captures the microphone and the camera and sends the RTMP stream to the server.

3. The browser establishes a connection via Websocket and send the play command.

4. The browser receives the WebRTC stream and plays that stream on the page.

Quick manual on testing

Capturing a video stream from the web camera and preparing to publishing

1. For this test we use the demo server at and the Flash Streaming web application in the Internet Explorer browserdemo.flashphoner.com

https://demo.flashphoner.com/client2/examples/demo/streaming/flash_client/streaming.html

Install Flash Player. Open the page of the web application and allow running Flash in a browser:

http://demo.flashphoner.com
https://demo.flashphoner.com/client2/examples/demo/streaming/flash_client/streaming.html

2. Click the "Login" button. When the "Connected" label appears, click the Start button next to the Publish field:

3. To make sure the broadcasting runs properly, open the Two Way Streaming application in a new window, click Connect and specify the stream
identifier, then click Play

Call flow
Below is the call flow when using the Flash Streaming example

streaming.mxml

https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/flash_client/streaming/src/streaming.mxml

1. Establishing a connection to the server.

connect();code

 private function connect():void{
 var url:String = StringUtil.trim(connectUrl.text);
 Logger.info("connect " + url);
 nc = new NetConnection();
 //if (url.indexOf("rtmp") == 0){
 // nc.objectEncoding = ObjectEncoding.AMF0;
 //}
 nc.client = this;
 nc.addEventListener(NetStatusEvent.NET_STATUS,
handleConnectionStatus);
 var obj:Object = new Object();
 obj.login = generateRandomString(20);
 obj.appKey = "flashStreamingApp";
 nc.connect(url,obj);
 }

2. Receiving from the server an event confirming successful connection.

NetConnection.Connect.Successcode

https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/flash_client/streaming/src/streaming.mxml#L109
https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/flash_client/streaming/src/streaming.mxml#L132

 private function handleConnectionStatus(event:NetStatusEvent):void{
 Logger.info("handleConnectionStatus: "+event.info.code);
 if (event.info.code=="NetConnection.Connect.Success"){
 Logger.info("near id: "+nc.nearID);
 Logger.info("far id: "+nc.farID);
 Logger.info("Connection opened");
 disconnectBtn.visible = true;
 connectBtn.visible = false;
 playBtn.enabled = true;
 publishBtn.enabled = true;
 setConnectionStatus("CONNECTED");
 } else if (event.info.code=="NetConnection.Connect.Closed" || event.info.code=="NetConnection.
Connect.Failed"){
 ...
 }
 }

3. Publishing the stream.

stream.publish();code

 private function addListenerAndPublish():void{
 publishStream.videoReliable=true;
 publishStream.audioReliable=false;
 publishStream.useHardwareDecoder=true;
 publishStream.addEventListener(NetStatusEvent.NET_STATUS, handleStreamStatus);
 publishStream.bufferTime=0;
 publishStream.publish(publishStreamName.text);
 }

4. Receiving from the server an event confirming successful publishing of the stream.

NetStream.Publish.Startcode

 private function handleStreamStatus(event:NetStatusEvent):void{
 Logger.info("handleStreamStatus: "+event.info.code);
 switch (event.info.code) {
 ...
 case "NetStream.Publish.Start":
 setPublishStatus("PUBLISHING");
 publishBtn.visible = false;
 unpublishBtn.visible = true;
 break;
 }
 }

5. Sending the audio-video stream via RTMP

6. Stopping publishing of the stream.

stream.unpublish();code

 private function unpublish():void{
 Logger.info("unpublish");
 if (publishStream!=null){
 publishStream.close();
 }
 videoFarEnd.clear();
 }

https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/flash_client/streaming/src/streaming.mxml#L196
https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/flash_client/streaming/src/streaming.mxml#L292
https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/flash_client/streaming/src/streaming.mxml#L188

7. Receiving from the server an event confirming successful unpublishing of the stream.

NetStream.Unpublish.Successcode

 private function handleStreamStatus(event:NetStatusEvent):void{
 Logger.info("handleStreamStatus: "+event.info.code);
 switch (event.info.code) {
 ...
 case "NetStream.Unpublish.Success":
 publishStream.removeEventListener(NetStatusEvent.NET_STATUS,
handleStreamStatus);
 publishStream=null;
 setPublishStatus("UNPUBLISHED");
 publishBtn.visible = true;
 unpublishBtn.visible = false;
 break;
 ...
 }
 }

Setting a server application while RTMP stream publishing
While publishing RTMP stream to WCS server, a server can be set that will be used to backend server interaction. It can be done with application
parameter in stream URL:

rtmp://host:1935/live?appKey=key1/streamName

Where

host is WCS server;
key1 is application key on WCS server;
streamName is stream name to publish

By default, if application key parameter is not set, the standard application will be used.flashStreamingApp

Besides, an application can be explicitly specified as stream URL part. To do this, the following parameterin file should be setflashphoner.properties

rtmp_appkey_source=app

Then application key must be set in stream URL as

rtmp://host:1935/key1/streamName

In this case, is also an application name, therefore when stream is published with URLlive

rtmp://host:1935/live/streamName

live application must be defined on WCS server.

Known issues
1. When audio only stream is published, and this stream is played in browser via WebRTC, no sound is played.

Symptoms: there is no sound when playing a stream published with Flash client.

Solution: change SDP setting for the streams published from Flash clients in file to be audio only.flash_handler_publish.sdp

https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/flash_client/streaming/src/streaming.mxml#L292
https://docs.flashphoner.com/display/WCS5EN/Applications+management
https://docs.flashphoner.com/display/WCS5EN/Settings+file+flashphoner.properties
https://docs.flashphoner.com/display/WCS5EN/SDP+settings+files#SDPsettingsfiles-flash_handler_publish.sdp

v=0
o=- 1988962254 1988962254 IN IP4 0.0.0.0
c=IN IP4 0.0.0.0
t=0 0
a=sdplang:en
m=audio 0 RTP/AVP 97 8 0
a=rtpmap:97 SPEEX/16000
a=rtpmap:8 PCMA/8000
a=rtpmap:0 PCMU/8000
a=sendonly

2. When RTMP stream is published with Flash Streaming, then it is played in iOS Safari browser via WebRTC, and another stream is published form iOS
Safari via WebRTC, sound stops playing in RTMP stream.

Symptoms:

a) The stream1 stream is published from Flash Streaming web application in Chrome browser on Windows
b) The stream1 stream is played in Two Way Streaming web application in iOS Safari browser. Sound and video play normally.
c) The stream2 stream is published from Two Way Streaming web application in iOS Safari browser.Sound stops playing.
d) Stop publishing stream in iOS Safari. Sound of stream1 plays again.

Solution: switch Avoid Transcoding Alhorithm off on the server using the following parameter in fileflashphoner.properties

disable_rtc_avoid_transcoding_alg=true

3. does not work for streams published from Flash clients/Parsing stream URL parameters

https://docs.flashphoner.com/display/WCS5EN/Settings+file+flashphoner.properties
https://docs.flashphoner.com/display/WCS5EN/Using+RTMP+encoder#UsingRTMPencoder-ParsingstreamURLparameters

	By means of Flash Player via RTMP

