
Mixer load testing

Overview

If server use case involves stream mixing, mixer load testing may be necessary before you
put server into production. The mixer testing is carried out as follows:

1. The required number of streams are published on server (at least one stream per mixer)

2. The speci�ed number of audiomixers are created, and streams are fed to mixers input.
One stream can be fed to one mixer input only

3. Mixers work for desired time then they will be destroyed and created again until the test
is �nished.

The server behavior can be observed with monitoring tools while testing.

To manage mixel load testing the special REST API queries are used.

REST API

A REST-query must be an HTTP/HTTPS POST query in the following form:

HTTP: http://streaming.flashphoner.com:8081/rest-api/mixer/test/start

HTTPS: https://streaming.flashphoner.com:8444/rest-api/mixer/test/start

Here:

streaming.flashphoner.com - is the address of the WCS server

8081 - the standard REST / HTTP port of the WCS server

8444 - the standard HTTPS port

rest-api - the required pre�x

mixer/test/start - the REST-method used

REST methods

/mixer/test/start

Start the test

REQUEST EXAMPLE

file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/Working_with_the_server/Monitoring/

RESPONSE EXAMPLE

RETURN CODES

Code Reason

200 OK

500 Internal error

/mixer/test/stop

Stop the test

REQUEST EXAMPLE

RESPONSE EXAMPLE

RETURN CODES

Code Reason

POST /mixer/test/start HTTP/1.1
Host: localhost:8081
Content-Type: application/json

{
 "feedingStreams": [
 "s1",
 "s2",
 "s3",
 "s4"
],
 "mixerCount": 2,
 "streamsInMixer": 2,
 "intervalInSeconds": 60
}

HTTP/1.1 200 OK
Access-Control-Allow-Origin: *
Content-Type: application/json

POST /mixer/test/stop HTTP/1.1
Host: localhost:8081
Content-Type: application/json

{
}

HTTP/1.1 200 OK
Access-Control-Allow-Origin: *
Content-Type: application/json

Code Reason

200 OK

404 Mixer not found

500 Internal error

/mixer/test/get_start_example

Return JSON object sample to pass to /mixer/test/start method

REQUEST EXAMPLE

RESPONSE EXAMPLE

RETURN CODES

Code Reason

200 OK

500 Internal error

Parameters

Parameter name Description Example

feedingSteams Stream published list to p
articipate in test

POST /mixer/test/get_start_example HTTP/1.1
Host: localhost:8081
Content-Type: application/json

{
 "feedingStreams": [
 "stream1",
 "stream2",
 "stream3"
],
 "mixerCount": 3,
 "streamsInMixer": 1,
 "intervalInSeconds": 60
}

HTTP/1.1 200 OK
Access-Control-Allow-Origin: *
Content-Type: application/json

["s1","s2","s3","
s4"]

Parameter name Description Example

mixerCount Number of mixers create
d

2

streamsInMixer Number of streams fed t
o each mixer input

2

intervalInSeconds Interval in seconds to des
troy mixers and create th
em again

60

Con�guration

To test mixer perfomance under high load, asynchronous media session disconnection
(which is enabled by default) should be disabled

WCS should be restarted to apply.

When test is �nished, this setting must be removed from con�guration �le.

Testing

1. For test we use:

WCS server

Chrome browser and REST-client to send queries

Two Way Streaming web application to publish streams

handler_async_disconnect=false

https://chrome.google.com/webstore/detail/rester/eejfoncpjfgmeleakejdcanedmefagga

2. Publish streams named s1 , s2 , s3 , s4

3. Open REST client. Send /mixer/test/start query with the following parameters:

streams published list: s1, s2, s3, s4

number of mixers: 2

number of streams per mixer: 2

mixer work interval: 120 seconds

4. Make sure mixers are created sending /mixer/find_all query

Two mixers mixer0 and mixer1 should be found

5. Server resource consumption can be observed while testing with Java Mission Control,
load and resource usage information and error information pages, and server logs.

6. Stop the test with /mixer/test/stop query

Tuning recommendations

1. If large CPU load was detected during testing, follow server tuning recommendations.

2. If resource leak was detected during testing, send detailed test description and report
collected to support@�ashphoner.com

file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/Working_with_the_server/Monitoring/Connecting_from_Java_Mission_Control/
file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/Working_with_the_server/Monitoring/Load_and_resource_usage_information/
file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/Working_with_the_server/Monitoring/Information_about_errors_and_configuration_parameters/
file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/Working_with_the_server/Logging/WCS_Core_logs/
file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/Working_with_the_server/Server_tuning_recommendations/
file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/Working_with_the_server/Diagnostics_and_troubleshooting/Preparing_an_error_report/#getting_logs_with_reportsh_script
mailto:support@flashphoner.com

