
In a browser via WebRTC

Overview

Supported platforms and browsers

Chrome Firefox Safari Edge

Windows ✅ ✅ ❌ ✅

Mac OS ✅ ✅ ✅ ✅

Android ✅ ✅ ❌ ✅

iOS ✅ ✅ ✅ ✅

Supported codecs

Video: H.264, VP8

Audio: Opus, PCMA, PCMU, G722, G729

Operation �owchart

1. The browser connects to the server via the Websocket protocol and sends the
publishStream command.

2. The browser captures the microphone and the camera and sends the WebRTC stream to
the server.

3. The second browser establishes a connection also via Websocket and sends the
playStream command.

4. The second browser receives the WebRTC stream and plays this stream on the page.

Quick manual on testing

1. For this test we use the demo server at demo.flashphoner.com and the Two Way
Streaming web application
https://demo.flashphoner.com/client2/examples/demo/streaming/two_way_streamin

g/two_way_streaming.html

2. Establish a connection to the server using the Connect button

3. Click Publish . The browser captures the camera and sends the stream to the server

4. Open Two Way Streaming in a separate window, click Connect and provide the identi�er
of the stream, then click Play

5. Playback diagrams in chrome://webrtc-internals

Call �ow
Below is the call �ow when using the Two Way Streaming example to play the stream

two_way_streaming.html

two_way_streaming.js

https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/two_way_streaming/two_way_streaming.html
https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/two_way_streaming/two_way_streaming.js

1. Establishing a connection to the server
Flashphoner.createSession() code

2. Receiving from the server an event con�rming successful connection
SESSION_STATUS.ESTABLISHED code

Flashphoner.createSession({urlServer: url}).on(SESSION_STATUS.ESTABLISHED,
function (session) {
 setStatus("#connectStatus", session.status());
 onConnected(session);
}).on(SESSION_STATUS.DISCONNECTED, function () {
 setStatus("#connectStatus", SESSION_STATUS.DISCONNECTED);
 onDisconnected();
}).on(SESSION_STATUS.FAILED, function () {
 setStatus("#connectStatus", SESSION_STATUS.FAILED);
 onDisconnected();
});

https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/two_way_streaming/two_way_streaming.js#L37
https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/two_way_streaming/two_way_streaming.js#L37

3. Playing the stream
Stream.play() code

4. Receiving from the server an event con�rming successful playing of the stream
STREAM_STATUS.PLAYING code

5. Receiving the audio and video stream via WebRTC

6. Stopping playing the stream
Stream.stop() code

7. Receiving from the server an event con�rming the playback is stopped
STREAM_STATUS.STOPPED code

Flashphoner.createSession({urlServer: url}).on(SESSION_STATUS.ESTABLISHED,
function (session) {
 setStatus("#connectStatus", session.status());
 onConnected(session);
}).on(SESSION_STATUS.DISCONNECTED, function () {
 ...
}).on(SESSION_STATUS.FAILED, function () {
 ...
});

session.createStream({
 name: streamName,
 display: remoteVideo
 ...
}).play();

session.createStream({
 name: streamName,
 display: remoteVideo
}).on(STREAM_STATUS.PENDING, function(stream) {
 ...
}).on(STREAM_STATUS.PLAYING, function (stream) {
 setStatus("#playStatus", stream.status());
 onPlaying(stream);
}).on(STREAM_STATUS.STOPPED, function () {
 ...
}).on(STREAM_STATUS.FAILED, function (stream) {
 ...
}).play();

function onPlaying(stream) {
 $("#playBtn").text("Stop").off('click').click(function () {
 $(this).prop('disabled', true);
 stream.stop();
 }).prop('disabled', false);
 $("#playInfo").text("");
}

https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/two_way_streaming/two_way_streaming.js#L164
https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/two_way_streaming/two_way_streaming.js#L164
https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/two_way_streaming/two_way_streaming.js#L96
https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/two_way_streaming/two_way_streaming.js#L164

Playing two or more streams on the same page

WCS allows to play two or more streams on the same page. In the context
of �owchart and call �ow playing multiple streams is no different from playing just one.

1. For the test we use:

2. the demo server at demo.flashphoner.com ;

3. the Two Way Streaming web application to publish streams

4. the 2 Players web application to play streams

5. Open the Two Way Streaming web application, click Connect , then Publish . Copy the
identi�er of the �rst stream from the Local window:

6. In another tab, open the Two Way Streaming web application, click Connect , then
Publish . Copy the identi�er of the second stream from the Local window:

session.createStream({
 name: streamName,
 display: remoteVideo
}).on(STREAM_STATUS.PENDING, function(stream) {
 ...
}).on(STREAM_STATUS.PLAYING, function (stream) {
 ...
}).on(STREAM_STATUS.STOPPED, function () {
 setStatus("#playStatus", STREAM_STATUS.STOPPED);
 onStopped();
}).on(STREAM_STATUS.FAILED, function (stream) {
 ...
}).play();

https://demo.flashphoner.com/client2/examples/demo/streaming/two_way_streaming/two_way_streaming.html
https://demo.flashphoner.com/client2/examples/demo/streaming/2players/2players.html

7. Open the 2 Players web application and specify identi�ers of the �rst (left) and the
second (right) streams:

8. Click Play below right and left players:

9. Diagrams in chrome://webrtc-internals for the �rst stream:

10. Diagrams in chrome://webrtc-internals for the second stream:

Maximum number of streams to play on the same page simultaneously

Maximum number of streams to play on the same page simultaneously with acceptable
quality depends on the following parameters:

a single stream parameters (resolution amd bitrate)

channel bandwidth from server to client

a transport used (UDP or TCP)

client device performance

For example, the following maximum values are experimentally obtained for the stream
1920x1080 with 2 Mbps bitrate using TCP transport on channel bandwidth 30-35 Mbps:

Intel Core i5 8 gen and newer based PC, from 8 Gb RAM: up to 15 audio+video streams,
or up to 6 audio+video and 14 audio only streams

A �agship Android/iOS device of year 2018 and newer (Samsung S series, Apple iPhone
Pro): up to 15 audio+video streams, or up to 6 audio+video and 14 audio only streams

A middle ol lower class device, or obsoleted Android/iOS device (Nokia 5, Apple iPhone 7):
up to 6 audio+video streams, or audio only streams

Thus, for the stream 1920x1080 with 2 Mbps bitrate seems optimal to play no more than 6
streams on the same page for any client can play them.

Let's test a webinar case: one desktop stream 1920x1080 with 2 Mbps bitrate and a number
of webcam streams 640x360 with 500 kbps bitrate. Under the same channel conditions:

Intel Core i5 8 gen and newer based PC, from 8 Gb RAM: up to 25 audio+video streams,
or up to 6 audio+video and 25 audio only streams

A �agship Android/iOS device of year 2018 and newer (Samsung S series, Apple iPhone
Pro): up to 20 audio+video streams, or up to 6 audio+video and 25 audio only streams

A middle ol lower class device, or obsoleted Android/iOS device of year 2017 and newer:
up to 10 audio+video streams, or up to 6 audio+video and 15 audio only streams

Thus, for webinar case with one desktop stream and a number of webcam streams seems
optimal to play no more than 10 streams on the same page for any client can play them.

WebRTC stream playback in custom player

A stream published on WCS server can be played via WebRTC in custom player, for example,
in a VR player. To do this, video page element to play stream should be passed
as remoteVideo parameter to session.createStream() WebSDK function

Testing

session.createStream({
 name: document.getElementById('playStream').value,
 display: display,
 remoteVideo: video
})
...

1. For test we use:

2. WCS server

3. Two Way Streaming web application to publish a stream

4. Delight VR player to play a stream

5. Publish stream on WCS server

6. Play stream in VR player

Custom player page code sample

https://demo.flashphoner.com/client2/examples/demo/streaming/two_way_streaming/two_way_streaming.html
https://delight-vr.com/

1. Video page element, stream name input �eld and buttons to start and stop playback
declaration

2. Player ready to playback event handling

3. Connection to WCS server establishing and stream creation

4. Start playback in VR player and stop button click handling

<div style="width: 50%;" id="display">
 <dl8-live-video id="remoteVideo" format="STEREO_TERPON">
 <source>
 </dl8-live-video>
</div>
<input class="form-control" type="text" id="playStream"
placeholder="Stream Name">
<button id="playBtn" type="button" class="btn btn-default"
disabled>Play</button>
<button id="stopBtn" type="button" class="btn btn-default"
disabled>Stop</button>

document.addEventListener('x-dl8-evt-ready', function () {
 dl8video = document.getElementById('remoteVideo');
 $('#playBtn').prop('disabled', false).click(function() {
 playStream();
 });
});

var video = dl8video.contentElement;
Flashphoner.createSession({urlServer: url}).on(SESSION_STATUS.ESTABLISHED,
function (session) {
 var session = Flashphoner.getSessions()[0];
 session.createStream({
 name: document.getElementById('playStream').value,
 display: display,
 remoteVideo: video
 }).on(STREAM_STATUS.PLAYING, function (stream) {
 ...
 }).play();
})

...
Flashphoner.createSession({urlServer: url}).on(SESSION_STATUS.ESTABLISHED,
function (session) {
 var session = Flashphoner.getSessions()[0];
 session.createStream({
 ...
 }).on(STREAM_STATUS.PLAYING, function (stream) {
 dl8video.start();
 $('#stopBtn').prop('disabled', false).click(function() {
 $('#playBtn').prop('disabled', false);
 $('#stopBtn').prop('disabled', true);
 stream.stop();

Automatic stream playback
Player and Embed Player examples support automatic stream playback with the following
URL parameter

for example

Where

hostname is WCS server hostname

stream1 is a stream name

Autoplay issues in different browsers

Chrome

In latest Chrome versions (71 and higher) content autoplay policy was changed. Now, user
has to do something to start video playback on web page, to press a key for example.

The policy change affects also audiocontext creation that is needed to play a sound.
Accrding to new policy, audiocontext may only be created as response to some user action.

Therefore, in Chrome 71 and in another Chromium based browsers that support new
autoplay policy, video automatic playback starts with muted sound. To enable sound user
has to unmute audio using appropriate control in Embed Player window.

Firefox and MacOS Safari

As in Chrome browser, autoplay starts with muted sound. Users action is required to unmute.

iOS Safari

 dl8video.exit();
 });
 }).play();
})

Full custom player page code sample

autoplay=true

https://hostname:8888/embed_player?
urlServer=wss://hostname:8443&streamName=stream1&autoplay=true&mediaProviders=We

https://demo.flashphoner.com:8888/client2/examples/demo/streaming/player/player.html
https://demo.flashphoner.com:8888/client2/examples/demo/streaming/embed_player/sample.html
https://developers.google.com/web/updates/2017/09/autoplay-policy-changes

Autoplay works since iOS 12.2. Note that autoplay policy as well as in Chrome browser,
requires user to move volume control to start sound playback.

In iOS 12.2-12.3 sound playback may not be started even after moving volume control. In
this case, video playback should be restarted without reloading the page.

Autoplay does not work in iOS Safari when Low Power Mode is enabled.

Audio playback tuning in iOS Safari

If one video stream is playing and then another video stream is publishing on the same page
(videochat case for example) in iOS Safari, the sound level may change for stream played.
This can be escaped by the following ways:

1. Query media devices access on session creation before playing a stream

2. 1-1,5 seconds after PLAYING stream status receiving, mute and unmute video and/or
sound

Flashphoner.createSession({urlServer: url}).on(SESSION_STATUS.ESTABLISHED,
function (session) {
 ...
 if (Browser.isSafariWebRTC() && Browser.isiOS() &&
Flashphoner.getMediaProviders()[0] === "WebRTC") {
 Flashphoner.playFirstVideo(localVideo, true,
PRELOADER_URL).then(function () {
 Flashphoner.getMediaAccess(null, localVideo).then(function
(disp) {
 });
 });
 }
 ...
});

session.createStream({
 name: streamName,
 display: remoteVideo
}).on(STREAM_STATUS.PENDING, function (stream) {
 ...
}).on(STREAM_STATUS.PLAYING, function (stream) {
 setStatus("#playStatus", stream.status());
 onPlaying(stream);
 if (Browser.isSafariWebRTC() && Browser.isiOS() &&
Flashphoner.getMediaProviders()[0] === "WebRTC") {
 setTimeout(function () {
 stream.muteRemoteAudio();
 stream.unmuteRemoteAudio();
 }, 1500);
 }
 ...
}).play();

Stereo audio playback in browser

The Opus codec parameters shoul be set on server side to play stereo audio in browser as like
as for stream publishing

In this case Firefox will play stereo audio without additional setup.

When a stream captured from RTMP, RTSP or VOD source is plaing in browser, audio is
usually transcoded to Opus codec. By default, Opus encoder is con�gured to play a speech
and monophonic audio. Encoder bitrate should be raised to 60 kbps or higher to play stereo
in browser

Chromium-based browsers

By default, Chrome browser plays WebRTC stream with stereo sound in Opus codec as mono
due to engine bug. An additiona client setup is required to workaround this Chrome
behaviour depending on client implementation

Using Web SDK

Since Web SDK build 0.5.28.2753.151 the following playback constraint option is available

for example

Using Websocket API

If only Websocket API is used in project, it is necessary to change the Opus codec parameters
in offer SDP right after its creation

opus_formats = maxaveragebitrate=64000;stereo=1;sprop-stereo=1;

opus.encoder.bitrate=60000

constraints.audio.stereo=true

session.createStream({
 name: streamName,
 display: remoteVideo,
 constraints: {
 audio: {
 stereo: true
 }
 }
 ...
}).play();

var connection = new RTCPeerConnection(connectionConfig,
connectionConstraints);

file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/Streaming_video_functions/Stream_capturing_and_publishing_to_the_server/From_a_web_camera_in_a_browser_via_WebRTC/#stereo-audio-publishing-in-browser
https://bugs.chromium.org/p/webrtc/issues/detail?id=8133
https://flashphoner.com/downloads/builds/flashphoner_client/wcs_api-2.0/flashphoner-api-0.5.28.2753-4b8279d6042dc16de985d57c0b61fcdc1ca2cebe.tar.gz
file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/Raw_WebSocket_API/

Additional video stream playing delay

Sometimes it is necessary to add a certain �xed delay relative to translation while playing a
stream. To do this, the option playoutDelay can be used since WebSDK
build 0.5.28.2753.142 shipped with WCS build 5.2.708 and later:

The delay is set in seconds.

The option works in Chromium browsers only which support the attribute

The delay is not applied to audio tracks in the stream and to audio only streams.

Known issues

1. Possible bug in the Safari browser on iOS leads to freezes while playing via
WebRTC

Video playback stops, while the audio track may continue playing. Recovery needs reloading the
page or restarting the browser.

...
connection.createOffer(constraints).then(function (offer) {
 offer.sdp = offer.sdp.replace('minptime=10', 'minptime=10;stereo=1;sprop-
stereo=1');
 connection.setLocalDescription(offer).then(function () {
 ...
 });
});

session.createStream({
 name: streamName,
 display: remoteVideo,
 playoutDelay: 10
}).on(STREAM_STATUS.PENDING, function (stream) {
 ...
}).play();

partial interface RTCRtpReceiver {
 attribute double? playoutDelayHint;
};

Symptoms

https://flashphoner.com/downloads/builds/flashphoner_client/wcs_api-2.0/flashphoner-api-0.5.28.2753-064a79100b235f033076f5b6152b2c3e5677efc7.tar.gz
https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.708.tar.gz

а) enable the transcoder on the server by setting the following parameter in
�ashphoner.properties

b) when playing the stream from iOS Safari explicitly specify width and height, for example:

2. Audiocodec PMCU is used instead of Opus when stream is published via
RTMP and is played via WebRTC

PMCU codec is shown in chrome://webrtc-internals

Switch Avoid Transcoding Alhorithm off using the following parameter in �ashphoner.properties

3. Audio may stop playing in RTMP stream

When RTMP stream is published with Flash Streaming, then it is played in iOS Safari browser
via WebRTC, and another stream is published form iOS Safari via WebRTC, sound stops
playing in RTMP stream.

a) The stream1 stream is published from Flash Streaming web application in Chrome browser
on Windows
b) The stream1 stream is played in Two Way Streaming web application in iOS Safari browser.
Sound and video play normally.
c) The stream2 stream is published from Two Way Streaming web application in iOS Safari
browser. Sound stops playing.
d) Stop publishing stream in iOS Safari. Sound of stream1 plays again.

Solution

disable_streaming_proxy=true

session.createStream({constraints:{audio:true,video:
{width:320,height:240}}}).play();

Symptoms

Solution

disable_rtc_avoid_transcoding_alg=true

Symptoms

file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/Working_with_the_server/Core_settings/Settings_file_flashphoner.properties/
file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/Working_with_the_server/Core_settings/Settings_file_flashphoner.properties/

Switch Avoid Transcoding Alhorithm off using the following parameter in �ashphoner.properties

4. RTMP stream playback in browser via WebRTC may stop due to keep alive

While publishing RTMP stream with Keep Alive disabled for all protocols, this stream playback
via WebRTC in browser stops when WebSocket timeout expires

Playback of stream published with RTMP encoder stops in browser with no error message

If Keep Alive is disabled for all protocols with the following
parameter in �ashphoner.properties �le

It is necessary to switch off WebSocket read timeout with the following parameter

5. G722 codec does not work in Edge browser

WebRTC stream with G722 audio does not play in Edge browser or play without sound and with
freezes

Use another codec or another browser. If Edge browser must be used, exclude G722 with the
following parameter

Solution

disable_rtc_avoid_transcoding_alg=true

Symptoms

Solution

keep_alive.algorithm=NONE

ws_read_socket_timeout=false

Symptoms

Solution

codecs_exclude_streaming=g722,telephone-event

file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/Working_with_the_server/Core_settings/Settings_file_flashphoner.properties/
file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/Working_with_the_server/Core_settings/Settings_file_flashphoner.properties/

6. Some Chromium based browsers do not support H264 codec depending
on browser and OS version

Stream publishing does not work, stream playback works partly (audio only) or does not work at
all

Enable VP8 on server side

exclude H264 for publishing or playing on clent side

Stream transcoding is enabled on server when stream published as H264 is played as VP8 and
vice versa.

7. Cross origin content error occurs if Flash is enabled in Chrome browser

If Flash is enabled in site settings, an error can occur in Chrome 71 and later browser console
Cross-origin content must have visible size large than 400 x 300 pixels, or it

will be blocked while playing WebRTC stream.

Cross-origin content must have visible size large than 400 x 300 pixels, or

it will be blocked message in browser console while playing WebRTC stream, playback
works normally

Symptoms

Solution

codecs=opus,...,h264,vp8,...

publishStream = session.createStream({
 ...
 stripCodecs: "h264,H264"
}).on(STREAM_STATUS.PUBLISHING, function (publishStream) {
 ...
});
publishStream.publish();

Attention

Symptoms

file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/Streaming_video_functions/Captured_stream_management/Stream_transcoding/

Use WebSDK without Flash support (a default option in latest builds)

8. With a large number of subscribers, lags in the playback stream are
observed

With a large number of subscribers (more than 200 per 720p stream) video lags and freezes are
observed, audio can play normally

Enable mutithreaded frames sending to the clients

Note than the setting affects only the streams which are not transcoded on this server

9. Audio goes to voice speaker by default when playing stream in iOS Safari

Low audio while WebRTC is playing in iOS Safari, for example, when iOS user is entering chat
room

Mute then unmute sound when playback is started, for example

Solution

flashphoner-no-flash.js

Symptoms

Solution

streaming_distributor_video_proxy_pool_enabled=true

Symptoms

Solution

stream = session.createStream(options).on(STREAM_STATUS.PLAYING, function
(stream) {
 stream.muteRemoteAudio();
 stream.unmuteRemoteAudio();
}).play();

10. If JDK 11 is used, server CPU load increases dramatically when iOS Safari
subscriber connects to server

Server CPU load increases dramatically when iOS Safari subscriber connects to server

Update JDK to the one of recommended versions: 8, 12, 14

11. When two or more streams are playing on the same page in Chrome
browser on some Xiaomi devices with MIUI 12, the �rst stream pucture may
twitch

When two streams are playing on the same page in 2 Players example, the �rst stream picture is
twitching, the second stream picture �ashing over the �rst one

a) use MIUI 11 on Xiaomi device

b) use mixer to play two or more streams on the same page

Symptoms

Solution

Symptoms

Solution

https://docs.flashphoner.com/display/WEBSDK2EN/2+Players
file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/Stream_mixer_functions/Stream_mixer/

