
From a web camera in a browser via WebRTC

Overview

Supported platforms and browsers

Chrome Firefox Safari Edge

Windows ✅ ✅ ❌ ✅

Mac OS ✅ ✅ ✅ ✅

Android ✅ ✅ ❌ ✅

iOS ✅ ✅ ✅ ✅

Supported codecs

Video: H.264, VP8

Audio: Opus, PCMA, PCMU, G722, G729

Operation �owchart

1. The browser connects to the server via the Websocket protocol and sends the
publishStream command.

2. The browser captures the microphone and the camera and sends a WebRTC stream to
the server.

3. The second browser establishes a connection also via Websocket and sends the
playStream command.

4. The second browser receives the WebRTC stream and plays that stream on the page.

Quick manual on testing

1. For this test we use the demo server at demo.flashphoner.com and the Two Way
Streaming web application
https://demo.flashphoner.com/client2/examples/demo/streaming/two_way_streamin

g/two_way_streaming.html

2. Establish a connection with the server by clicking the Connect button

3. Click Publish . The browser captures the camera and sends the stream to the server

4. Make sure the stream us sent to the server and the system operates normally by opening
chrome://webrtc-internals

5. Open the Two Way Streaming app in a new window, click Connect and specify the
stream ID, then click Play

6. Playback diagrams in chrome://webrtc-internals

Call �ow

Below is the call �ow based on the Two Way Streaming example

two_way_streaming.html

two_way_streaming.js

https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/two_way_streaming/two_way_streaming.html
https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/two_way_streaming/two_way_streaming.js

1. Establishing connection to the server
Flashphoner.createSession() code

2. Receiving from the server the successful connection status
SESSION_STATUS.ESTABLISHED code

Flashphoner.createSession({urlServer: url}).on(SESSION_STATUS.ESTABLISHED,
function (session) {
 setStatus("#connectStatus", session.status());
 onConnected(session);
}).on(SESSION_STATUS.DISCONNECTED, function () {
 setStatus("#connectStatus", SESSION_STATUS.DISCONNECTED);
 onDisconnected();
}).on(SESSION_STATUS.FAILED, function () {
 setStatus("#connectStatus", SESSION_STATUS.FAILED);
 onDisconnected();
});

Flashphoner.createSession({urlServer: url}).on(SESSION_STATUS.ESTABLISHED,
function (session) {
 setStatus("#connectStatus", session.status());

https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/two_way_streaming/two_way_streaming.js#L37
https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/two_way_streaming/two_way_streaming.js#L37

3. Publishing the stream
Stream.publish() code

4. Receiving from the server the successful publishing status
STREAM_STATUS.PUBLISHING code

5. Sending audio-video stream via WebRTC

6. Stopping publishing the stream
Stream.stop() code

 onConnected(session);
}).on(SESSION_STATUS.DISCONNECTED, function () {
 setStatus("#connectStatus", SESSION_STATUS.DISCONNECTED);
 onDisconnected();
}).on(SESSION_STATUS.FAILED, function () {
 setStatus("#connectStatus", SESSION_STATUS.FAILED);
 onDisconnected();
});

session.createStream({
 name: streamName,
 display: localVideo,
 cacheLocalResources: true,
 receiveVideo: false,
 receiveAudio: false
}).on(STREAM_STATUS.PUBLISHING, function (stream) {
 setStatus("#publishStatus", STREAM_STATUS.PUBLISHING);
 onPublishing(stream);
}).on(STREAM_STATUS.UNPUBLISHED, function () {
 setStatus("#publishStatus", STREAM_STATUS.UNPUBLISHED);
 onUnpublished();
}).on(STREAM_STATUS.FAILED, function () {
 setStatus("#publishStatus", STREAM_STATUS.FAILED);
 onUnpublished();
}).publish();

session.createStream({
 name: streamName,
 display: localVideo,
 cacheLocalResources: true,
 receiveVideo: false,
 receiveAudio: false
}).on(STREAM_STATUS.PUBLISHING, function (stream) {
 setStatus("#publishStatus", STREAM_STATUS.PUBLISHING);
 onPublishing(stream);
...
}).publish();

function onPublishing(stream) {
 $("#publishBtn").text("Stop").off('click').click(function () {
 $(this).prop('disabled', true);
 stream.stop();
 }).prop('disabled', false);

https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/two_way_streaming/two_way_streaming.js#L136
https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/two_way_streaming/two_way_streaming.js#L136
https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/two_way_streaming/two_way_streaming.js#L74

7. Receiving from the server an even con�rming successful unpublishing
STREAM_STATUS.UNPUBLISHED code

Stream publishing with local video playback in VR Player
When stream is captured from webcamera it is possible to play a local video in a browser-
based VR player, Delight Player for example. This way stream can be played in virtual and
mixed reality devices if one of browsers supports work on this device. JavaScript and HTML5
features are used to integrate a custom player.

Testing

1. For test we use:

WCS server

test page with Delight VR player to play stream while publishing

 $("#publishInfo").text("");
}

session.createStream({
 name: streamName,
 display: localVideo,
 cacheLocalResources: true,
 receiveVideo: false,
 receiveAudio: false
...
}).on(STREAM_STATUS.UNPUBLISHED, function () {
 setStatus("#publishStatus", STREAM_STATUS.UNPUBLISHED);
 onUnpublished();
...
}).publish();

https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/two_way_streaming/two_way_streaming.js#L136
https://delight-vr.com/
file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/Streaming_video_functions/Playing_a_video_stream_from_the_server/In_a_browser_with_Delight_Player/#using-javascript-and-html5
https://delight-vr.com/

2. Set stream name test and press Publish . Stream published is played in Delight player

Player page example code

1. Declaration of video element to play the stream, stream name input �eld and
Publish / Unpublish buttons

2. Player readiness event handling

3. Creating mock elements to play a stream

<div style="width: 50%;">
 <dl8-live-video id="remoteVideo" format="STEREO_TERPON" muted="true">
 <source>
 </dl8-live-video>
</div>
<input class="form-control" type="text" id="streamName"
placeholder="Stream Name">
<button id="publishBtn" type="button" class="btn btn-default"
disabled>Publish</button>
<button id="unpublishBtn" type="button" class="btn btn-default"
disabled>UnPublish</button>

document.addEventListener('x-dl8-evt-ready', function () {
 dl8video = $('#remoteVideo').get(0);
 $('#publishBtn').prop('disabled', false).click(function() {
 publishStream();
 });
});

4. Establishing connection to the server and stream creation

5. Publishing stream, playback start in VR player and Unpublish button handling

Audio and video tracks activity checking
Before build 5.2.533 media tra�c presence in a stream can be controlled by the following
parameter in �ashphoner.properties

By default, RTP activity checking is enabled. If no media packets from browser in 60 seconds,
publisher connection will be closed with the message to log Failed by RTP activity .

var mockLocalDisplay = $('<div></div>');
var mockLocalVideo = $('<video></video>',{id:'mock-LOCAL_CACHED_VIDEO'});
mockLocalDisplay.append(mockLocalVideo);

var video = dl8video.contentElement;
Flashphoner.createSession({urlServer: url}).on(SESSION_STATUS.ESTABLISHED,
function (session) {
 var session = Flashphoner.getSessions()[0];
 session.createStream({
 name: $('#streamName').val(),
 display: mockLocalDisplay.get(0)
 }).on(STREAM_STATUS.PUBLISHING, function (stream) {
 ...
 }).publish();
})

session.createStream({
 ...
}).on(STREAM_STATUS.PUBLISHING, function (stream) {
 var srcObject = mockLocalVideo.get(0).srcObject;
 video.srcObject = srcObject;
 dl8video.start();
 mockLocalVideo.get(0).pause();
 mockLocalVideo.get(0).srcObject = null;
 $('#unpublishBtn').prop('disabled', false).click(function() {
 stream.stop();
 $('#publishBtn').prop('disabled', false);
 $('#unpublishBtn').prop('disabled', true);
 dl8video.exit();
 });
}).publish();

Full source code of the sample VR player page

rtp_activity_detecting=true,60

https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.533.tar.gz
file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/Working_with_the_server/Core_settings/Settings_file_flashphoner.properties/

Since build 5.2.533, video and audio RTP activity checking settings are split

Activity timeout is set by the following parameter

Therefore, if video only streams are published to the server, audio RTP activity checking
should be disabled

If audio only streams are published to the server, video RTP activity checking should be
disabled

RTP activity can be checked for publishing streams only, not for playing streams.

Disable tracks activity checking by stream name

Since build 5.2.1784 it is possible to disable video and audio tracks activity checking for the
streams with names matching a regular expression

The feature may be useful for streams in which a media tra�c can stop for a long time, for
example, screen sharing streams from an application window

In this case tracks activity checking will not be applied to the tracks named like conference-
123-user-456-screen

If Chrome browser sends empty video due to web camera
con�ict

Some Chrome versions does not return an error if web camera is busy, but publish a stream
with empty video (black screen). In this case, stream publishing can be stopped by two ways:
using JavaScript and HTML5 on client, or using server settings.

rtp_activity_audio=true
rtp_activity_video=true

rtp_activity_timeout=60

rtp_activity_audio=false

rtp_activity_video=false

rtp_activity_audio_exclude=stream1
rtp_activity_video_exclude=stream1

rtp_activity_audio_exclude=.*-screen$
rtp_activity_video_exclude=.*-screen$

https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.533.tar.gz
https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.1784.tar.gz

Stopping a stream with empty video on client side

Videotrack that Chrome browsers creates for busy web camera, stops after no more than
one second publishing, then stream is send without a videotrack. In this case videotrack
state (readyState variable) changes to ended , and corresponding onended event is
generated that can be catched by web application. To use this event:

1. Add the registartion function for onended event handler to web application script, in
which stream publishing is stopped with Stream.stop()

2. Add function to remove event handler when stream is stopped

3. Add function to extract videotrack

4. Register event handler when publishing a stream

function addVideoTrackEndedListener(localVideo, stream) {
 var videoTrack = extractVideoTrack(localVideo);
 if (videoTrack && videoTrack.readyState == 'ended') {
 console.error("Video source error. Disconnect...");
 stream.stop();
 } else if (videoTrack) {
 videoTrack.onended = function (event) {
 console.error("Video source error. Disconnect...");
 stream.stop();
 };
 }
}

function removeVideoTrackEndedListener(localVideo) {
 var videoTrack = extractVideoTrack(localVideo);
 if(videoTrack) {
 videoTrack.onended = null;
 }
}

function extractVideoTrack(localVideo) {
 return localVideo.firstChild.srcObject.getVideoTracks()[0];
}

session.createStream({
 name: streamName,
 display: localVideo,
 ...
}).on(STREAM_STATUS.PUBLISHING, function (stream) {
 addVideoTrackEndedListener(localVideo, stream);
 setStatus("#publishStatus", STREAM_STATUS.PUBLISHING);
 onPublishing(stream);
 ...
}).publish();

5. Remove event handler when stopping a stream

Videotrack activity checking on server side

Videotrack activity checking for streams published on server is enabled by default with the
following parameter in �ashphoner.properties �le

In this case, if there is no video in stream, its publishing will be stopped after 60 seconds.

Video only stream publishing with constraints
In some cases, video only stream should be published while microphone is busy, for example
video is published while voice phone call. To prevent browser access request to microphone,
set the constraints for video only publishing:

Audio only stream publishing
In most cases, it is enough to set the constraints to publish audio only stream:

Audio only stream publishing in Safari browser

function onPublishing(stream) {
 $("#publishBtn").text("Stop").off('click').click(function () {
 $(this).prop('disabled', true);
 removeVideoTrackEndedListener(localVideo);
 stream.stop();
 }).prop('disabled', false);
 $("#publishInfo").text("");
}

rtp_activity_video=true

session.createStream({
 name: streamName,
 display: localVideo,
 constraints: {video: true, audio: false}
 ...
}).publish();

session.createStream({
 name: streamName,
 display: localVideo,
 constraints: {video: false, audio: true}
 ...
}).publish();

file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/Working_with_the_server/Core_settings/Settings_file_flashphoner.properties/

When audio only stream is published from iOS Safari browser with constraints, browser does
not send audio packets. To workaround this, a stream should be published with video, then
video should be muted:

In this case, iOS Safari browser will send emply video packets (blank screen) and audio
packets.

Disable resolution constraints normalization in Safari browser

By default, WebSDK normalizes stream publishing resolution constraints set in Safari
browser. In this case, if width or height is not set, or equal to 0, then the picture resolution is
forced to 320x240 or 640x480. Since WebSDK build 0.5.28.2753.109, it is possible to disable
normalization and pass resolution constraints to the browser as is, for example:

H264 encoding pro�les exclusion

Since build 5.2.620 some H264 encoding pro�les can be excluded from remote SDP which is
sent by server to browser. The pro�les to exclude should be listed in the following parameter

In this case, Main (4d) and High (64) pro�les will be excluded, but Baseline (42) still remains:

session.createStream({
 name: streamName,
 display: localVideo,
 constraints: {video: true, audio: true}
 ...
}).on(STREAM_STATUS.PUBLISHING, function (stream) {
 stream.muteVideo();
 ...
}).publish();

publishStream = session.createStream({
 ...
 disableConstraintsNormalization: true,
 constraints {
 video: {
 width: {ideal: 1024},
 height: {ideal: 768}
 },
 audio: true
 }
}).on(STREAM_STATUS.PUBLISHING, function (publishStream) {
 ...
});
publishStream.publish();

webrtc_sdp_h264_exclude_profiles=4d,64

https://flashphoner.com/downloads/builds/flashphoner_client/wcs_api-2.0/flashphoner-api-0.5.28.2753-149855cc050bf7512817104fd0104e9cce760ac4.tar.gz
https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.620.tar.gz

This setting may be useful if some browser encodes B-frames for example using high pro�les
while hardware acceleration is enabled.

By default, no pro�les will be excluded from SDP if they are supported by browser

Content type management while publishing from Chromium
based browser

In some cases, most browsers based on Chromium 91 agressively assess a publishing
channel quality and drop publishing resolution lower than set in constraints, even if channel
is enough to publish 720p or 1080p stream. To workaround this behaviour, since WebSDK
build 2.0.180 videoContentHint option was added:

In WebSDK builds before 2.0.242 this option is set to detail by default and forces browsers
to keep the publishing resolution as set in constraints. However, browser can drop FPS in this
case when publishing stream from som USB web cameras. If FPS should be kept mo matter
to resolution, the option should be set to motion

a=rtpmap:102 H264/90000
a=fmtp:102 level-asymmetry-allowed=1;packetization-mode=1;profile-level-
id=42001f
a=rtpmap:125 H264/90000
a=fmtp:125 level-asymmetry-allowed=1;packetization-mode=1;profile-level-
id=42e01f
a=rtpmap:127 H264/90000
a=fmtp:127 level-asymmetry-allowed=1;packetization-mode=0;profile-level-
id=42001f
a=rtpmap:108 H264/90000
a=fmtp:108 level-asymmetry-allowed=1;packetization-mode=0;profile-level-
id=42e01f

webrtc_sdp_h264_exclude_profiles=

session.createStream({
 name: streamName,
 display: localVideo,
 cacheLocalResources: true,
 receiveVideo: false,
 receiveAudio: false,
 videoContentHint: "detail"
 ...
}).publish();

session.createStream({
 name: streamName,
 display: localVideo,
 cacheLocalResources: true,
 receiveVideo: false,
 receiveAudio: false,

https://flashphoner.com/downloads/builds/flashphoner_client/wcs_api-2.0/flashphoner-api-2.0.180-80e1206c3e60eec0877d2bab72fa64bd57607caa.tar.gz
https://flashphoner.com/downloads/builds/flashphoner_client/wcs_api-2.0/flashphoner-api-2.0.242-353e07227264ca622dcbca2b58be9611858e6b7d.tar.gz

Since WebSDK build 2.0.242, videoContentHint is set to motion by default. The detail or
text values should be set only for screen sharing streaming in browser.

Since WebSDK build 2.0.204 videoContentHint selection is available in Media Device
example

FPS management in Firefox browser

By default, Firefox is publishing video with maximum FPS shown by web camera driver fo
requested resolution. This value is 30 FPS for most of modern web cameras. Publishing FPS
can be de�ned more strictly if necessary. To do this, disable constraints normalization:

 videoContentHint: "motion"
 ...
}).publish();

session.createStream({
 ...
 disableConstraintsNormalization: true,
 constraints: {
 video: {
 width: 640,

https://flashphoner.com/downloads/builds/flashphoner_client/wcs_api-2.0/flashphoner-api-2.0.242-353e07227264ca622dcbca2b58be9611858e6b7d.tar.gz
https://flashphoner.com/downloads/builds/flashphoner_client/wcs_api-2.0/flashphoner-api-2.0.204-7a856914ee67487c798649823142fe47ba7cbdbe.tar.gz

Note that Firefox can exclude the camera from the list while requesting camera and
microphone access if camera driver does not provide a required combination of resolution
and FPS. Also, Firefox can change a publishing resolution if there is only one resolution with
required FPS in camera driver response.

Stereo audio publishing in browser
Audio bitrate should be more than 60000 bps to publish stereo in Opus codec from browser.
This can be done by setting Opus codec parameters on client side

or on server side

In this case, Firefox browser publishes stereo audio without additional setup.

Stereo audio publishing in Chrome based browsers

A certain client setup is required to publish stereo audio from Chrome. There are two ways to
set this up depending on client implementation

Using Web SDK

If Web SDK is used in project, it is necessary to set the following constraint option:

 height: 360,
 frameRate: { max: 15 }
 },
 audio: true
 }
}).on(STREAM_STATUS.PUBLISHING, function (publishStream) {
 ...
}).publish();

session.createStream({
 name: streamName,
 display: remoteVideo,
 constraints: {
 audio: {
 bitrate: 64000
 },
 ...
 }
 ...
}).publish();

opus_formats = maxaveragebitrate=64000;stereo=1;sprop-stereo=1;

session.createStream({
 name: streamName,
 display: localVideo,

file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WebSDK2/

Using Websocket API

If only Raw Websocket API is used in project, it is necessary to disable echo cancellation

If echo cancellation is enabled, Chrome will publish mono audio even if stereo is set in Opus
codec options.

How to bypass an encrypted UDP tra�c blocking

Sometimes an encrypted UDP mediatra�c may be blocked by ISP. In this case, WebRTC
stream publishing over UDP will fail with Failed by RTP activity error or with Failed by
ICE timeout . To bypass this, it is recommended to use TCP transport at client side

Another option is to use external or internal TURN server or publish a stream via RTMP or
RTSP.

Known issues

1. If the web app is inside an iframe element, publishing of the video stream
may fail.

 constraints: {
 audio: {
 stereo: true
 },
 ...
 }
 ...
}).publish();

var constraints = {
 audio: {
 echoCancellation: false,
 googEchoCancellation: false
 },
 ...
};
...
navigator.getUserMedia(constraints, function (stream) {
 ...
}, reject);

session.createStream({
 name: streamName,
 display: localVideo,
 transport: "TCP"
 ...
}).publish();

file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/Raw_WebSocket_API/
file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/Streaming_video_functions/Publishing_and_playing_stream_via_WebRTC_over_TCP/
file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/Working_through_Firewall/TURN_server/
file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/Streaming_video_functions/Stream_capturing_and_publishing_to_the_server/Using_RTMP_encoder/
file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/Streaming_video_functions/Stream_capturing_and_publishing_to_the_server/RTP_stream_publishing_via_RTSP/

IceServer errors in the browser console

Put the app out of iframe to an individual page

2. Bitrate problems are possible when publishing a stream under Windows 10
or Windows 8 with hardware acceleration enabled in a browser

Low quality of the video, muddy picture, bitrate shown in chrome://webrtc-internals is less
than 100 kbps.

Turn off hardware acceleration in the browser or use the VP8 codec to publish

3. Stream publishing with local video playback in VR Player does not work in
legacy MS Edge

When stream is published in legacy MS Edge, local video playback does not start in VR Player

Use another browser to publish a stream or update legacy MS Edge to Chromium Edge

4. In some cases microphone does not work in Chrome browser while
publishing WebRTC stream

Symptoms

Solution

Symptoms

Solution

Symptoms

Solution

Michrophone does not work while publishing WebRTC stream, including example web
applications out of the box

Turn off gain node creation in Chrome browser using WebSDK initialization
parameter createMicGainNode: false

Note that microphone gain setting will not work in this case.

5. G722 codec does not work in Edge browser

WebRTC stream with G722 audio does not publish in Edge browser

Use another codec or another browser. If Edge browser must be used, exclude G722 with the
following parameter

6. Some Chromium based browsers do not support H264 codec depending
on browser and OS version

Stream publishing does not work, stream playback works partly (audio only) or does not work at
all

Symptoms

Solution

Flashphoner.init({
 flashMediaProviderSwfLocation: '../../../../media-provider.swf',
 createMicGainNode: false
});

Symptoms

Solution

codecs_exclude_streaming=g722,telephone-event

Symptoms

file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/Streaming_video_functions/Stream_capturing_and_publishing_to_the_server/Managing_camera_and_microphone/#microphone-settings

Enable VP8 on server side

exclude H264 for publishing or playing on client side

Note that stream transcoding is enabled on server when stream published as H264 is played as
VP8 and vice versa.

7. iOS Safari 12.1 does not send video frames when picture with certain
resolution is published

When H264 stream is published from iOS Safari 12.1, subscriber receives audio packets only,
publishers WebRTC statistics also shows audio frames only

Enable VP8 on server side

exclude H264 for publishing or playing on client side

Note that stream transcoding is enabled on server when stream published as H264 is played as
VP8 and vice versa.

Solution

codecs=opus,...,h264,vp8,...

publishStream = session.createStream({
 ...
 stripCodecs: "h264,H264"
}).on(STREAM_STATUS.PUBLISHING, function (publishStream) {
 ...
});
publishStream.publish();

Symptoms

Solution

codecs=opus,...,h264,vp8,...

publishStream = session.createStream({
 ...
 stripCodecs: "h264,H264"
}).on(STREAM_STATUS.PUBLISHING, function (publishStream) {
 ...
});
publishStream.publish();

file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/Streaming_video_functions/Captured_stream_management/Stream_transcoding/
file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/Streaming_video_functions/Captured_stream_management/Stream_transcoding/

8. Stream from built-in camera cannot be published in iOS Safari 12 and
MacOS Safari 12 in some resolutions

Stream publishing from browser fails with error in console

a) use only resolutions which passes WebRTC Camera Resolution test

b) use external camera supporting resolutions as needed in MacOS Safari

c) disable resolution constraints normalization and set width and height as ideal ,
see example above.

9. Non-latin characters in stream name should be encoded

Non-latin characters in stream name are replaced to questionmarks on server side

Use JavaScript function encodeURIComponent() while publishing stream

10. In some cases, server can not parse H264 stream encoded with CABAC

Symptoms

Overconstrained error: width

Solution

Symptoms

Solution

var streamName = encodeURIComponent($('#publishStream').val());
session.createStream({
 name: streamName,
 display: localVideo,
 cacheLocalResources: true,
 receiveVideo: false,
 receiveAudio: false
...
}).publish();

https://webrtchacks.github.io/WebRTC-Camera-Resolution/

WebRTC H264 stream publishing does not work

a) use lower encoding pro�le

b) Enable VP8 on server side

exclude H264 for publishing or playing on client side

Note that stream transcoding is enabled on server when stream published as H264 is played as
VP8 and vice versa.

11. WebRTC playback may not work in Firefox on MacOS Cataline

System warning "libgmpopenh264.dylib" can't be opened because it is from an
identified developer is displayed, H264 WebRTC stream is not playing

Firefox uses a third-party library unsigned by the developer to work with H264. In accordance with
macOS Catalina security policies, this is prohibited. To add an exception, go to System
Preferences - Security & Privacy - General - Allow apps downloaded from - App

Store and identified developers , �nd "libgmpopenh264.dylib" was blocked from
opening because it is not from an identified developer and click Open Anyway

12. ice_keep_alive_enabled=true parameter is not used it latest WCS builds

Since build 5.2.672, the parameter

Symptoms

Solution

codecs=opus,...,h264,vp8,...

publishStream = session.createStream({
 ...
 stripCodecs: "h264,H264"
}).on(STREAM_STATUS.PUBLISHING, function (publishStream) {
 ...
});
publishStream.publish();

Symptoms

Solution

file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/Streaming_video_functions/Captured_stream_management/Stream_transcoding/
https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.672.tar.gz

is not used. ICE keep alive timeout is started automatically if WCS starts sending STUN keep
alives �rst, for example while incoming SIP call or while pushing WebRTC stream to another
server

13. MacOS Safari 14.0.2 (MacOS 11) does not publish stream from MacBook
FaceTimeHD camera with aspect ratio 4:3

After stream publishing starts in the examples Two Way Streaming, Stream Recording etc, a
browser stops sending video packets in 10 seconds, the black screen is shown on player side,
publishing fails due to video tra�c abcense

a) Publish stream with aspect ratio 16:9 (for example, 320x180, 640x360 etc)

b) Update Web SDK to build 0.5.28.2753.153 or newer, where default resolution for Safari browser
is adopted to 16:9

c) Update MacOS to build 11.3.1, Safari to build 14.1 (16611.1.21.161.6)

14. Streams published on Origin server in CDN may not be played from Edge
if some H264 encoding pro�les are excluded

ice_keep_alive_enabled=true

Symptoms

Solution

publishStream = session.createStream({
 ...
 constraints: {
 video: {
 width: 640,
 height: 360
 },
 audio: true
 }
}).on(STREAM_STATUS.PUBLISHING, function (publishStream) {
 ...
});
publishStream.publish();

https://flashphoner.com/downloads/builds/flashphoner_client/wcs_api-2.0/flashphoner-api-0.5.28.2753-8ca571381a4d8d1acecdce43ae4733aabd3984b6.tar.gz
file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/Streaming_video_CDN_functions/CDN_2.0/

WebRTC H264 stream published on Origin is playing as audio only from Edge with VP8 codec
shown in stream metrics

If some H264 encoding pro�les are excluded on Origin

the allowed H264 pro�les should be explicitly set on Egde with the following parameter

15. MacOS Safari 14.0.* stops sending video packets after video in muted
and then unmuted due to Webkit bug

When muteVideo() then unmuteVideo() are applied, the publishing stops after a minute with
Failed by Video RTP activity error

Update MacOS to build 11.3.1, Safari to build 14.1 (16611.1.21.161.6), in this build the Webkit
bug seems to be �xed, the problem is not reproducing

16. When publishing from Google Pixel 3/3XL, the picture is strongly
distorted in some resolutions

A local video is displaying normally, but is playing with a strong distortion (transverse stripes)

Symptoms

Solution

webrtc_sdp_h264_exclude_profiles=4d,64

profiles=42e01f

Symptoms

Solution

Symptoms

https://bugs.webkit.org/show_bug.cgi?id=220362

Avoid the following resolutions while publishing stream from Google Pixel 3/3XL:

160x120

1920x1080

17. iOS Safari 15.1 requires from another side to enable image orientation
extension when publishing H264 stream

Webpage crashes in iOS Safari 15.1 when stream publishing is started (Webkit bugs
https://bugs.webkit.org/show_bug.cgi?id=232381 and https://bugs.webkit.org/show_bug.cgi?
id=231505)

a) enable image orientation extension support on client side in iOS Safari

and in WCS builds before 5.2.1074 disable RTP bundle support

Since WCS build 5.2.1074 RTP bundle may not be disabled

b) use VP8 to publish a stream

Solution

Symptoms

Solution

session.createStream({
 name: streamName,
 ...
 cvoExtension: true
}).publish();

rtp_bundle=false

session.createStream({
 name: streamName,
 ...
 stripCodecs: "H264"
}).publish();

https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.1074.tar.gz
https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.1074.tar.gz

