
From the computer screen (screen sharing) in a
browser via WebRTC

Overview

Supported platforms and browsers

Chrome Firefox Safari

Windows ✅ ✅ ❌

Linux ✅ ✅ ❌

Mac OS ✅ ✅ ✅

Android ❌ ❌ ❌

iOS ❌ ❌ ❌

Operation �owchart

1. The browser establishes a connection to the server via the Websocket protocol and
sends the publishStream command.

2. The browser captures the screen and sends a WebRTC stream to the server.

3. The second browser establishes a connection also via Websocket and sends the
playStream command.

4. The second browser receives the WebRTC stream and plays the stream on the page.

Quick manual on testing

1. For the test we use the demo server at demo.flashphoner.com and the Screen Sharing
web application in the Chrome browser
https://demo.flashphoner.com/client2/examples/demo/streaming/screen-

sharing/screen-sharing.html

2. Click the Start button. The browser asks for permission to access the screen, and
screen capturing starts, then the stream is publishing:

3. Make sure the stream is sent to the server and the system operates normally in
chrome://webrtc-internals

4. Open Two Way Streaming in a new window, click Connect and specify the stream id,
then click Play :

5. Playback diagrams in chrome://webrtc-internals

Call �ow

Below is the call �ow when using the Screen Sharing example

screen-sharing.html

screen-sharing.js

1. Checking if the extension install is required
Browser.isFirefox() , Browser.isChrome() code

if (Browser.isFirefox()) {
 $("#installExtensionButton").show();
 ...
} else if (Browser.isChrome()) {
 $('#mediaSourceForm').hide();
 interval = setInterval(function() {
 chrome.runtime.sendMessage(extensionId, {type: "isInstalled"},
function (response) {
 if (response) {
 $("#extension").hide();

https://github.com/flashphoner/flashphoner_client/blob/584ddddd39b3eed3d1d04ef0f3900a9dc4d0f355/examples/demo/streaming/screen-sharing/screen-sharing.html
https://github.com/flashphoner/flashphoner_client/blob/584ddddd39b3eed3d1d04ef0f3900a9dc4d0f355/examples/demo/streaming/screen-sharing/screen-sharing.js
https://github.com/flashphoner/flashphoner_client/blob/584ddddd39b3eed3d1d04ef0f3900a9dc4d0f355/examples/demo/streaming/screen-sharing/screen-sharing.js#L17

2. Establishing a connection to the server
Flashphoner.createSession() code

3. Receiving from the server an event con�rming successful connection
SESSION_STATUS.ESTABLISHED code

4. Publishing the stream
Stream.publish() code

 clearInterval(interval);
 onExtensionAvailable();
 } else {
 (inIframe()) ? $("#installFromMarket").show() :
$("#installExtensionButton").show();
 }
 });
 }, 500);
} else {
 $("#notify").modal('show');
 return false;
}

Flashphoner.createSession({urlServer: url}).on(SESSION_STATUS.ESTABLISHED,
function(session){
 //session connected, start streaming
 startStreaming(session);
}).on(SESSION_STATUS.DISCONNECTED, function(){
 setStatus(SESSION_STATUS.DISCONNECTED);
 onStopped();
}).on(SESSION_STATUS.FAILED, function(){
 setStatus(SESSION_STATUS.FAILED);
 onStopped();
});

Flashphoner.createSession({urlServer: url}).on(SESSION_STATUS.ESTABLISHED,
function(session){
 //session connected, start streaming
 startStreaming(session);
 ...
});

session.createStream({
 name: streamName,
 display: localVideo,
 constraints: constraints
}).on(STREAM_STATUS.PUBLISHING, function(publishStream){
 ...
}).on(STREAM_STATUS.UNPUBLISHED, function(){
 ...
}).on(STREAM_STATUS.FAILED, function(stream){
 ...
}).publish();

https://github.com/flashphoner/flashphoner_client/blob/584ddddd39b3eed3d1d04ef0f3900a9dc4d0f355/examples/demo/streaming/screen-sharing/screen-sharing.js#L116
https://github.com/flashphoner/flashphoner_client/blob/584ddddd39b3eed3d1d04ef0f3900a9dc4d0f355/examples/demo/streaming/screen-sharing/screen-sharing.js#L116
https://github.com/flashphoner/flashphoner_client/blob/584ddddd39b3eed3d1d04ef0f3900a9dc4d0f355/examples/demo/streaming/screen-sharing/screen-sharing.js#L150

5. Receiving from the server an event con�rming successful publishing
STREAM_STATUS.PUBLISHING code

6. Sending the audio-video stream via WebRTC

7. Stopping publishing the stream
Stream.stop() code

session.createStream({
 name: streamName,
 display: localVideo,
 constraints: constraints
}).on(STREAM_STATUS.PUBLISHING, function(publishStream){
 ...
 setStatus(STREAM_STATUS.PUBLISHING);
 //play preview
 session.createStream({
 name: streamName,
 display: remoteVideo
 }).on(STREAM_STATUS.PLAYING, function(previewStream){

document.getElementById(previewStream.id()).addEventListener('resize',
function(event){
 resizeVideo(event.target);
 });
 //enable stop button
 onStarted(publishStream, previewStream);
 }).on(STREAM_STATUS.STOPPED, function(){
 publishStream.stop();
 }).on(STREAM_STATUS.FAILED, function(stream){
 //preview failed, stop publishStream
 if (publishStream.status() == STREAM_STATUS.PUBLISHING) {
 setStatus(STREAM_STATUS.FAILED, stream);
 publishStream.stop();
 }
 }).play();
}).on(STREAM_STATUS.UNPUBLISHED, function(){
 ...
}).on(STREAM_STATUS.FAILED, function(stream){
 ...
}).publish();

session.createStream({
 name: streamName,
 display: localVideo,
 constraints: constraints
}).on(STREAM_STATUS.PUBLISHING, function(publishStream){
 /*
 * User can stop sharing screen capture using Chrome "stop" button.
 * Catch onended video track event and stop publishing.
 */
 document.getElementById(publishStream.id()).srcObject.getVideoTracks()
[0].onended = function (e) {
 publishStream.stop();
 };
 ...

https://github.com/flashphoner/flashphoner_client/blob/584ddddd39b3eed3d1d04ef0f3900a9dc4d0f355/examples/demo/streaming/screen-sharing/screen-sharing.js#L150
https://github.com/flashphoner/flashphoner_client/blob/584ddddd39b3eed3d1d04ef0f3900a9dc4d0f355/examples/demo/streaming/screen-sharing/screen-sharing.js#L176

8. Receiving from the server an event con�rming unpublishing of the stream
STREAM_STATUS.UNPUBLISHED code

To developer
The screen sharing function can be used to publish a video stream that demonstrates the
desktop or an application window.
The most of moredn browsers do not need an extension, but WCS Javascript API may be
used with a Chrome extension for screen sharing for backward compatibilty. The example
how to deploy a custom screen sharing extension follows.

Extension for Google Chrome with publication in Chrome Store

Source code for the extension is available by the following link: Chrome Screen Sharing
Extension

Create a Google account

 setStatus(STREAM_STATUS.PUBLISHING);
 //play preview
 session.createStream({
 name: streamName,
 display: remoteVideo
 }).on(STREAM_STATUS.PLAYING, function(previewStream){
 ...
 }).on(STREAM_STATUS.STOPPED, function(){
 publishStream.stop();
 }).on(STREAM_STATUS.FAILED, function(stream){
 //preview failed, stop publishStream
 if (publishStream.status() == STREAM_STATUS.PUBLISHING) {
 setStatus(STREAM_STATUS.FAILED, stream);
 publishStream.stop();
 }
 }).play();
 ...
}).publish();

session.createStream({
 name: streamName,
 display: localVideo,
 constraints: constraints
}).on(STREAM_STATUS.PUBLISHING, function(publishStream){
 ...
}).on(STREAM_STATUS.UNPUBLISHED, function(){
 setStatus(STREAM_STATUS.UNPUBLISHED);
 //enable start button
 onStopped();
}).on(STREAM_STATUS.FAILED, function(stream){
 ...
}).publish();

https://github.com/flashphoner/flashphoner_client/blob/584ddddd39b3eed3d1d04ef0f3900a9dc4d0f355/examples/demo/streaming/screen-sharing/screen-sharing.js#L185
https://github.com/flashphoner/flashphoner_client/tree/89281428578df670f19be4f059d8c227885cb994/examples/demo/dependencies/screen-sharing/chrome-extension

1. Go to google.com and click Sign in button

2. On the Sign in page, click Create account link

3. Create your Google Account page will be opened. Fill the required �elds and click Next
step button to create the account.

Register as Chrome Web Store Developer

1. Sign in to Chrome Developer Dashboard with the created Google account

https://google.com/
https://chrome.google.com/webstore/developer/dashboard

2. Pay a one-time $5 developer signup fee

Customization for your domain

Follow the procedures described below to use the extensions with your domain.

Edit manifest �le manifest.json of the Chrome extension.

Change:

name

author

description

homepage_url

under "externally_connectable":"matches" change flashphoner.com to your domain

Save your icons for the extension to chrome-extension directory and edit the �le names in
icons and web_accessible_resources . (For more information, see Manifest - Icons and
Supplying Images)

Pack the extension

Pack �les from chrome-extension folder into ZIP archive.

Publish the extension

1. Sign in to Chrome Developer Dashboard

https://developer.chrome.com/apps/manifest/icons
https://developer.chrome.com/images
https://chrome.google.com/webstore/developer/dashboard

2. In the dashboard, click Add new item button

3. Accept the developer agreement

4. On the Upload page, choose the chrome-extension.zip �le and click Upload button

5. When the extension is uploaded, the page for editing the extension draft will be opened.
Edit the extension as required and click Save draft and return to dashboard button
at the bottom of the page

6. The extension will appear in the developer dashboard. Click Publish link to publish the
extension

A published extension will have status Published as on the image below

For more information, see Chrome Web Store Publishing Tutorial.

Extension Inline Installation

Extension installation can be initiated by clicking a link on the Screen Sharing client page.
Note that the extension to be installed should be customized, published and approved before
inline installation can be used.

Follow the procedures described below to use the client with your extensions.

https://developer.chrome.com/webstore/publish

1. When publishing, select Inline Install option

2. Verify and add website with your domain to the extension

Click Add a New Site

Google Search Console page will open in a new tab. Enter URL with your domain

A page with the instruction for the site veri�cation will open. Follow the procedure
steps and click Verify button

If the veri�cation is passed, a page con�rming successful veri�cation will be opened

The website will appear in the list in the extension options and the extension can be
associated with the site

CONFIGURING THE CLIENT

Edit Screen-sharing.html and Screen-sharing.js

In Screen-sharing.html the chrome-webstore-item parameter should point to your
extension in the Chrome Store

In Screen-sharing.js replace the value of the chromeScreenSharingExtensionId
parameter by the ID of your extension

To get the ID of the extension, click More info of this extension in Chrome Developer
Dashboard

Media source parameters

To con�gure screen media source parameters, use parameters of the con�guration object
passed to the init() method upon initializing of the Flashphoner API instance.

Parameter list

Parameter Description

screenSharingVideoWidth Screen media source width

screenSharingVideoHeight Screen media source height

screenSharingVideoFps Screen media source framerate

These parameters set marginal values of resolution and framerate (FPS). For instance,
screenSharingVideoWidth = 1080 means the width of the source video cannot be more
than 1080 pixels, but can be less (for example when sending a stream of an app window that
has the width of 720 pixels).

System sound capture in Chrome browser

In Chrome browser, there is ability to translate audio stream from system sound source while
capturing a screen. The feature is useful in screencasting, for example. To capture system
sound, set Share audio option in Chrome dialog window while choosing streaming source
window or browser tab:

var f = Flashphoner.getInstance();
var configuration = new Configuration();
....
configuration.screenSharingVideoWidth = 1920;
configuration.screenSharingVideoHeight = 1080;
configuration.screenSharingVideoFps = 10;
f.init(configuration);

https://chrome.google.com/webstore/developer/dashboard

Chrome extension code:

Capture source (screen or window) management in Firefox browser

In older Firefox browser versions, all the screen or some program window can be chosen as
video stream source with constraints.video.mediaSource parameter

code:

Source selection interface example:

callback({sourceId: sourceId, systemSoundAccess: opts.canRequestAudioTrack});

constraints.video.type = "screen";
if (Browser.isFirefox()){
 constraints.video.mediaSource = $('#mediaSource').val();
}
session.createStream({
 name: streamName,
 display: localVideo,
 constraints: constraints
})

https://github.com/flashphoner/flashphoner_client/blob/89281428578df670f19be4f059d8c227885cb994/examples/demo/dependencies/screen-sharing/chrome-extension/background-script.js#L21
https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/screen-sharing/screen-sharing.js#L139

In modern Firefox versions, a media source may be chosen only in browser sharing dialog
window.

Program window capture example

Attention

Screen capture example

Screen sharing without extension

Firefox browser

Firefox browser does not use extension to share screen

Chromium based browsers

Since Chrome 73 and Flashphoner WebSDK 0.5.28.2753.86 screen sharing is possible
without extension. To do this constraints.video.withoutExtension parameter should be
passed when stream is created

code

Safari browser in MacOS

Since Safari 13 and Flashphoner WebSDK 0.5.28.2753.152 screen sharing is possible
without extension. To do this constraints.video.withoutExtension parameter should be
passed when stream is created

code

Known limits

1. In Chrome browser, picture resolution and FPS are set by source dimensions (screen,
windows or browser tab) and by real picture updating speed, not by constraints. This
issue is �xed since Flashphoner WebSDK build 0.5.28.2753.152

2. System sound capture only works starting from Chrome 74

Known issues

1. If the web app is inside an iframe element, publishing of the video stream
may fail.

IceServer errors in the browser console

Put the app out of iframe to an individual page

if ($("#woChromeExtension").prop('checked')) {
 constraints.video.withoutExtension = true;
}

if ($("#woChromeExtension").prop('checked') || Browser.isSafari()) {
 constraints.video.withoutExtension = true;
}

Symptoms

Solution

https://flashphoner.com/downloads/builds/flashphoner_client/wcs_api-2.0/flashphoner-api-0.5.28.2753-218c188ea896656b1ca142f02b4f58bf09bd8bf1.tar.gz
https://github.com/flashphoner/flashphoner_client/blob/584ddddd39b3eed3d1d04ef0f3900a9dc4d0f355/examples/demo/streaming/screen-sharing/screen-sharing.js#L144
https://flashphoner.com/downloads/builds/flashphoner_client/wcs_api-2.0/flashphoner-api-0.5.28.2753-44fe1b1556caa6e3a0fc18fe71114d4996afdc2a.tar.gz
https://github.com/flashphoner/flashphoner_client/blob/c8acaca916fe742166f0c5c24f6dd7e4f8160a42/examples/demo/streaming/screen-sharing/screen-sharing.js#L195
https://flashphoner.com/downloads/builds/flashphoner_client/wcs_api-2.0/flashphoner-api-0.5.28.2753-44fe1b1556caa6e3a0fc18fe71114d4996afdc2a.tar.gz

2. Bitrate problems are possible when publishing a stream under Windows 10
or Windows 8 with hardware acceleration enabled in a browser

Low quality of the video, muddy picture, bitrate shown in chrome://webrtc-internals is less
than 100 kbps.

Turn off hardware acceleration in the browser or use the VP8 codec to publish

3. All streams captured from the screen stop if any one of them stops

While multiple streams are captured from the screen on one tab in the Chrome browser, if one
stream is stopped, all streams stop.

Symptoms

Solution

Symptoms

Cache tracks by the source of the video and stop them along with the last stream that uses that
source, for example:

4. Chrome browser stops sending video tra�c when application window
captured is minimized

If an application window captured is minimized to task bar, the stream freezes at subscribers
side, and publishing may fail by RTP activity

In builds before 5.2.1784 disable RTP activity control for all the streams

in builds since 5.2.1784 disable video RTP activity control by stream name template, for example

Solution

var handleUnpublished = function(stream) {
 console.log("Stream unpublished with status " + stream.status());
 //get track label
 var video = document.getElementById(stream.id() + LOCAL_CACHED_VIDEO);
 var track = video.srcObject.getVideoTracks()[0];
 var label = track.label;
 //see if someone using this source
 if (countDisplaysWithVideoLabel(label) > 1) {
 //remove srcObject but don't stop tracks
 pushTrack(track);
 video.srcObject = null;
 } else {
 var tracks = popTracks(track);
 for (var i = 0; i < tracks.length; i++) {
 tracks[i].stop();
 }
 }
 //release resources
 Flashphoner.releaseLocalMedia(streamVideoDisplay);
 //remove stream display
 display.removeChild(streamDisplay);
 session.disconnect();
};

Symptoms

Solution

rtp_activity_video=false

rtp_activity_video_exclude=.*-screen$

https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.1784.tar.gz
https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.1784.tar.gz

