
RTMP stream republishing from other RTMP
server

Overview

WCS can capture RTMP stream translated by another RTMP server. Technically, the capture
process of republished stream does not differ from stream capture using RTMP encoder or
Flash application. Let's consider below Adobe Media Server as RTMP stream source for WCS.

AMS setup to stream republishing
Adobe Media Server is a server software for live streaming targeted the clients using Adobe
Flash Player. By default, server allows to publish a stream, so a special application should be
made for re-publishing.

1. Consider AMS installation on Linux server in /opt/adobe/ams directory. Server
applications are placed to applications subdirectory. Make the republish application
directory:

2. Place the application script �le main.asc to /opt/adobe/ams/applications/republish
directory

Republishing script details

Script variables setup:

Here

wcsServer is the WCS server address to republish;

roomName is the su�x to add to the stream name for WCS server.

cd /opt/adobe/ams/applications
mkdir republish

var wcsServer = "192.168.0.5";
var netConnections = new Object();
var streams = new Object();
var roomName = "#amsroom1";

file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/Streaming_video_functions/Stream_capturing_and_publishing_to_the_server/Using_RTMP_encoder/
https://www.adobe.com/ru/products/adobe-media-server-family.html

Publisher connection handling. Here connection to WCS server is established for
republishing:

Stream publishing handling. Here the stream is republishing to WCS server with su�x
addition to the stream name:

Stream publish stopping handling. Here republishing the stream to WCS server stops:

application.onConnect = function (client){
 trace("onConnect "+client.id);
 var nc = new NetConnection();
 nc.ping = function(){
 nc.call("pong",null);
 }
 nc.connect("rtmp://"+wcsServer+":1935/live");
 nc.onStatus = function(info){
 trace("onStatus info.code: "+info.code);
 if (info.code=="NetConnection.Connect.Success"){
 trace("connection opened: "+wcsServer);
 }
 }
 netConnections[client.id]=nc;
 trace("onConnect done");
 return true;
}

application.onPublish = function(client, myStream){
 var wcsStreamName = myStream.name+roomName;
 trace("onPublish "+myStream.name+" by client.id "+client.id);
 var nc = netConnections[client.id];
 var ns = new NetStream(nc);
 ns.onStatus = function(info){
 if (info.code == "NetStream.Publish.Start"){
 trace("now publishing "+myStream.name);
 }
 }
 ns.attach(myStream);
 ns.publish(wcsStreamName);
 streams[myStream.name]=ns;
 trace("published stream "+wcsStreamName+" to: "+wcsServer);
 ns.publish(false);
 ns.publish(wcsStreamName);
}

application.onUnpublish = function(client, myStream){
 trace("onUnpublish "+myStream.name+" by client.id "+client.id);
 var ns = streams[myStream.name];
 if (ns){
 ns.publish(false);
 var s = Stream.get(myStream.name);
 Stream.destroy(s);
 delete streams[myStream.name];
 trace("unpublished "+myStream.name);

Publishers' connection closing handling. Here WCS server connection is closing:

The application will be available on AMS server by
URL rtmp://youramsserver:1935/republish , where youramsserver is your AMS server
hostname.

Testing

1. For test we use:

2. AMS server ams5-demo.flashphoner.com

3. WCS server mixer-demo.flashphoner.com

4. ManyCam Virtual webcam to publish RTMP stream to AMS

5. Player web application to playback the stream captured on WCS server

 }
}

application.onDisconnect = function (client){
 trace("onDisconnect "+client.id);
 var nc = netConnections[client.id];
 if (nc){
 nc.close();
 delete netConnections[client.id];
 trace("disconnected "+client.id);
 }
}

AMS republish application script

https://demo.flashphoner.com/client2/examples/demo/streaming/player/player.html

6. Set RTMP server parameters in ManyCam, set stream name to amsStream

7. Set RTMP streaming parameters in ManyCam and press Done

8. Start streaming from ManyCam

9. Open Player web application on WCS server. Set the stream name amsStream#amsroom1
in Stream �eld and press Start . The stream captured playback begins

