
Using RTMP encoder

To run online broadcasts you can use special hardware or software video capturing devices
(Live Encoder). Such devices or programs capture a video stream and send it to the server via
the RTMP protocol.

Web Call Server can receive an RTMP video stream from such a device or software
(Wirecast, ffmpeg, OBS Studio, FMLE etc.) encoded to H.264 + AAC or Sorenson Spark +
Speex and broadcast this video stream to browsers and mobile devices.

Overview

Technical speci�cations

Receiving incoming audio and video streams via the RTMP protocol

Broadcasting of the received video stream to browsers and platforms: any of supported
by WCS

Uses video stream playback technologies: any of supported by WCS

Codec support

Video H.264 + audio AAC

Video Sorenson Spark + audio Speex 16 kHz

Operation �owchart

file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/Streaming_video_functions/Stream_capturing_and_publishing_to_the_server/Using_RTMP_encoder/Using_Wirecast/
file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/Streaming_video_functions/Stream_capturing_and_publishing_to_the_server/Using_RTMP_encoder/Using_ffmpeg/
file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/Streaming_video_functions/Stream_capturing_and_publishing_to_the_server/Using_RTMP_encoder/Using_OBS_Studio/
file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/Streaming_video_functions/Stream_capturing_and_publishing_to_the_server/Using_RTMP_encoder/Using_Adobe_FMLE/

1. Live Encoder establishes a connection to the server via the RTMP protocol and sends the
publish command.

2. Live Encoder sends the RTMP stream to the server.

3. The browser establishes a connection via Websocket and sends the playStream
command.

4. The browser receives the WebRTC stream and plays that stream on the page.

Quick manual on testing
1. For test we use:

2. WCS server

3. OBS Studio

4. Player web application in Chrome browser to stream playback

5. Set up RTMP strteaming to the server address, for example
rtmp://test1.flashphoner.com:1935/live/ , set the stream key obsStream :

https://demo.flashphoner.com:8444/client2/examples/demo/streaming/player/player.html

6. Start streaming in OBS Studio:

7. Open Player application. Set the stream key in Stream �eld and click Start button. The
stream captured playback begins:

Call �ow
Below is the call �ow when an RTMP stream is published from an external source (Live
Encoder) to the WCS server

Parsing stream URL parameters

When RTMP stream is published or played on WCS, RTMP connection and stream parameters
may be set in stream URL like this:

Where

host is WCS server hostname;

connectParam1 , connectParam2 are RTMP connection parameters;

streamName is stream name on server;

streamParam1 , streamParam2 are stteam parameters.

WCS server passes the parameters to backend server in REST hook in custom �eld, for
example:

rtmp://host:1935/live?connectParam1=val1&connectParam2=val2/streamName?
streamParam1=val1&streamParam2=val2

file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/REST_Hooks/Four_types_of_REST_methods/Type_2_-_the_direct_invoke/

This feature can be used for example to authenticate client on backend server while
publishing or playing RTMP-stream on WCS server.

Connection parameters passing as stream parameters

Connection parameters

Publishing parameters

URL:http://localhost:8081/apps/EchoApp/connect
OBJECT:
{
 "nodeId" : "Qb3rAjf3lzoy6PEl1WZkUhRG1DsTykgj@192.168.1.1",
 "appKey" : "flashStreamingApp",
 "sessionId" : "/127.0.0.1:5643/192.168.1.1:1935",
 "useWsTunnel" : false,
 "useWsTunnelPacketization2" : false,
 "useBase64BinaryEncoding" : false,
 "keepAlive" : false,
 "custom" : {
 "connectParam1" : "val1",
 "connectParam2" : "val2"
 },
 "login" : "rQq83sodiCPY0pJXCxGO"
}

URL:http://localhost:8081/apps/EchoApp/publishStream
OBJECT:
{
 "nodeId" : "Qb3rAjf3lzoy6PEl1WZkUhRG1DsTykgj@192.168.1.1",
 "appKey" : "flashStreamingApp",
 "sessionId" : "/127.0.0.1:5643/192.168.1.1:1935",
 "mediaSessionId" : "627990f9-8fe5-4e92-bb2a-863cc4eb43de",
 "name" : "stream1",
 "published" : true,
 "hasVideo" : false,
 "hasAudio" : true,
 "status" : "NEW",
 "record" : true,
 "width" : 0,
 "height" : 0,
 "bitrate" : 0,
 "minBitrate" : 0,
 "maxBitrate" : 0,
 "quality" : 0,
 "mediaProvider" : "Flash",
 "custom" : {
 "streamParam1" : "val1",
 "streamParam2" : "val2"
 }
}

In some cases it is necessary to pass RTMP connection parameters as stream parameters,
authentication parameter for example

This feature is enabled by the following setting

In this case, the RTMP URL example above will be interpreted as

Setting a server application while RTMP stream publishing
While publishing RTMP stream to WCS server, a server application can be set that will be used
to backend server interaction. It can be done with parameter in stream URL:

Where

host is WCS server;

key1 is application key on WCS server;

streamName is stream name to publish

By default, if application key parameter is not set, the standard
application flashStreamingApp will be used.

Besides, an application can be explicitly speci�ed as stream URL part. To do this, the
following parameter in �ashphoner.properties �le should be set

Then application key must be set in stream URL as

In this case, live is also an application name, therefore when stream is published with URL

live application must be de�ned on WCS server.

rtmp://test.flashphoner.com:1935/live/test?auth=key

rtmp_use_stream_params_as_connection=true

rtmp://test.flashphoner.com:1935/live?auth=key/test

rtmp://host:1935/live?appKey=key1/streamName

rtmp_appkey_source=app

rtmp://host:1935/key1/streamName

rtmp://host:1935/live/streamName

file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/Working_with_the_server/Command_line_interface/Applications_management/
file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/Working_with_the_server/Core_settings/Settings_file_flashphoner.properties/

Sorenson Spark + Speex 16 kHz stream publishing

WCS server can capture RTMP stream encoded with Sorenson Spark + Speex 16kHz to FLV
container. This stream can be published, for example, using ffmpeg as follows:

Known limits

1. To handle such stream including stream recording, the stream will be transcoded to
H.264 + AAC.

2. Payload types 127 for video and 97 for audio should be set in SDP when publishing such
stream, for example

RTMP connection activity checking
In some cases, if RTMP encoder does not support Keep Alive packets sending, or Keep Alives
are disabled due to another reason with the following parameter

it is necessary to control RTMP connection and close it when no data was transmitted for a
long time. To do this, use the following parameters.

Media tra�c checking

Since build 5.2.533, RTP activity checking for RTMP streams can be enabled with the
following parameter in �ashphoner.properties �le:

ffmpeg -re -i BigBuckBunny.flv -preset ultrafast -ar 16000 -ac 1 -acodec
speex -vcodec flv -strict -2 -f flv
rtmp://test1.flashphoner.com:1935/live/test

v=0
o=- 1988962254 1988962254 IN IP4 0.0.0.0
c=IN IP4 0.0.0.0
t=0 0
a=sdplang:en
m=video 0 RTP/AVP 127
a=rtpmap:127 FLV/90000
a=sendonly
m=audio 0 RTP/AVP 97 8 0
a=rtpmap:97 SPEEX/16000
a=rtpmap:8 PCMA/8000
a=rtpmap:0 PCMU/8000
a=sendonly

keep_alive.algorithm=NONE

https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.533.tar.gz
file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/Working_with_the_server/Core_settings/Settings_file_flashphoner.properties/

Read timeout

Read timeout is set with the following parameter in �ashphoner.properties �le:

In this case RTMP connection will be closed if no data was received in last 120 seconds.

Write timeout

Write timeout is set with the following parameter

In this case RTMP connection will be closed if no data was sent in last 120 seconds.

Read and write timeout

Read and write timeout is set with the following parameter

In this case RTMP connection will be closed if no data was received and sent in last 120
seconds.

RTMP stream picture rotation

When publishing RTMP stream to WCS, stream picture can be rotated using RTMP metadata.
It may be useful for picture handling from mobile publishers.

To turn a picture to a certain angle RTMP metadata containing orientation �eld should be
sent. The following orientations are supported:

Orientation value Rotation angle, degrees

0 0

1 90

2 180

3 270

flash_rtp_activity_enabled=true

rtmp.server_read_socket_timeout=120

rtmp.server_write_socket_timeout=120

rtmp.server_socket_timeout=120

file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/Working_with_the_server/Core_settings/Settings_file_flashphoner.properties/

A picture is rotated clockwise.

Set up

To enable stream rotation, set the following parameter in �ashphoner.properties �le:

Stream rotation works for transcoded streams only

Testing

1. For test we use:

2. WCS server with picture rotation enabled

3. Flash Streaming application to publish and rotate the stream

4. Player application to play the stream

5. Open Flash Streaming application. Set stream name test and desired stream
publishing parameters:

video_filter_enable_rotate=true

Attention

file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/Working_with_the_server/Core_settings/Settings_file_flashphoner.properties/
https://demo.flashphoner.com:8888/client2/examples/demo/streaming/flash_client/streaming.html
https://demo.flashphoner.com:8888/client2/examples/demo/streaming/player/player.html

6. Click Login then Start . Stream publishing begins

7. Open Player application in anoter tab or browser, play the stream named test

8. In Flash Streaming application click 180 button in Rotate camera section. The stream
rotated to 180 degrees clockwise will be displayed in Player application

To developer

Stream orientation metadata sending is implemented in Flash Streaming application as
follows:

code

private function rotate(degree:Number):void {
 var metaDataObj:Object = new Object();
 switch(degree) {
 case 0:
 Logger.info("rotate camera to 0");
 metaDataObj.orientation = 0;
 break;
 case 90:
 Logger.info("rotate camera to 90");
 metaDataObj.orientation = 1;
 break;
 case 180:
 Logger.info("rotate camera to 180");
 metaDataObj.orientation = 2;
 break;
 case 270:
 Logger.info("rotate camera to 270");
 metaDataObj.orientation = 3;

https://github.com/flashphoner/flashphoner_client/blob/bb18803b1c8c843157c4a536c35a0ab709eb24eb/examples/demo/streaming/flash_client/streaming/src/streaming.mxml#L227

Note that orientation value should be sent but not angle itself.

How to rotate stream published from ffmpeg

ffmpeg RTMP encoder allows to send orientation metadata to WCS server using command
line switches:

Note that ffmpeg sends orientation value but not angle itself.

Decoding buffer size management

When RTMP stream is published from software encoder supportin hardware acceleration on
NVIDIA GPU, and contains B-frames, the stream picture can twitch in some RTMP or HLS
players. To workaround this, since build 5.2.863 the parameter was added to set the
maximum decoding buffer size passed in SPS

By default, buffer size is not limited. This eliminates picture twitching, but can inscrease
latency due to excessive buffering. In this case, the buffer size can be limited to 2 frames
(default value before build 5.2.863)

or more frames to eliminate twitching without viewable latency.

Incoming RTMP stream buffering

 break;
 default:
 metaDataObj.orientation = 0;
 break;
 }
 sendMetaData(metaDataObj);
}

private function sendMetaData(data:Object):void{
 if (publishStream != null) {
 publishStream.send("@setDataFrame", "onMetaData", data);
 }
}

ffmpeg -i input.mp4 -metadata:s:v rotate=90 -vcodec copy -acodec copy -strict
-2 -f flv rtmp://test1.flashphoner.com:1935/live/stream_ffmpeg

h264_sps_max_dec_frame_buffering=-1

h264_sps_max_dec_frame_buffering=2

https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.863.tar.gz
https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.863.tar.gz

RTMP stream published with high resolution and bitrate may be played non smoothly via
WebRTC with freezes or low FPS if publishers channel is unstable. Incoming stream should
be buffered to prevent playback issues

Adaptive RTMP incoming buffer has the following parameters to tune:

Parameter Description Default value

rtmp_in_buffer_start
_size

Minimum buffer volume t
o start, ms

300

rtmp_in_buffer_initi
al_size

Maxumum buffer volume,
ms

2000

rtmp_in_buffer_max_b
ufferings_allowed

Maximum bufferings amo
ut allowed

-1 (unlimited)

rtmp_in_buffer_polli
ng_time

Buffer polling period, ms 100

rtmp_in_buffer_overf
low_allowed_deviatio
n

Maximum difference bet
ween minimum and maxi
mum buffer volumes use
d, ms

1000

rtmp_in_buffer_overf
low_deviation_window

Window size to collect th
e difference, ms

30000

rtmp_in_buffer_overf
low_rate

Maximum buffer over�ow
rate

0.15

rtmp_in_buffer_clear
_threshold

Clear all the data exceedi
ng maxumum buffer size
when buffer reaches the t
hreshold, ms

30000

Stop stream buffering if stream delay grows

RTMP stream timestamps may signi�cally differ from server time, and stream may give a
delay if there is not enough systrem perfomance for software stream encoder, or if channel
bandwidth decreases. Buffering of such stream will give a periodic freezes while playing it.
Since build 5.2.1311 the following parameter was added to disable buffering and pass
incoming tra�c directly to server engine

By default, RTMP tra�c will always be buffered if buffering is enabled. Buffering can be
disabled when stream delay reaches a value de�ned in milliseconds

rtmp_in_buffer_enabled=true

rtmp_in_buffer_input_delay_threshold=0

https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.1311.tar.gz

In this case, buffer is cleared and goes to the PASSTHROUGH state. Even if stream delay
becomes lower, buffer will remain in the state, and stream will not be buffered until publishing
is stopped.

Detect stream parameters by metadata or media tra�c

By default, a possible RTMP publishing parameters are set according to SDP settings �le.
Since build 5.2.1862 the following option is added to enable automatic stream publishing
parameters detection by stream metadata or media tra�c data

The option is enabled by default. In this case, WCS changes SDP according to a stream
metadata received or, if there are no metadata in 1 second, according to media information
from the stream media packets received.

Known issues

1. A stream containing B-frames does not play or plays with artifacts
(latencies, lags)

a stream sent by the RTMP encoder does not play or plays with latencies or lags

warnings in the client log:

change the encoder settings so, that B-frames were not used (lower encoding pro�le,
specify in the command line etc)

transcode the stream, in this case there will be no B-frames in transcoded stream

rtmp_in_buffer_input_delay_threshold=3000

flash_detect_metadata_by_traffic=true

Symptoms

09:32:31,238 WARN 4BitstreamNormalizer - RTMP-pool-10-thread-5 It is B-
frame!

Solution

file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/Working_with_the_server/Core_settings/SDP_settings_files/#flash_handler_publishsdp
https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.1862.tar.gz
file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/Working_with_the_server/Logging/WCS_Core_logs/#client-logs
file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/Streaming_video_functions/Captured_stream_management/Stream_transcoding/

2. AAC frames of type 0 are not supported by decoder and will be ignored
while stream pulled playback

There are warnings in the client log:

Enable Fraunhofer AAC codec with the following parameter

3. When publishing and then playing and recording H264 + AAC stream video
may be out of sync with sound, or no sound at all.

When playing H264 + AAC stream published on server, and when recording such stream, sound is
out of sync with video or absent

a) set the following parameter in �ashphoner.properties �le

This parameter also turns off AAC frames dropping.

b) use Fraunhofer AAC codec

4. Sound may be distorted or absent when resampled to 11025 Hz

Symptoms

10:13:06,815 WARN AAC - AudioProcessor-c6c22de8-a129-43b2-bf67-
1f433a814ba9 Dropping AAC frame that starts with 0, 119056e500

Solution

use_fdk_aac=true

Symptoms

Solution

disable_drop_aac_frame=true

use_fdk_aac=true

file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/Working_with_the_server/Logging/WCS_Core_logs/#client-logs
file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/Working_with_the_server/Core_settings/Settings_file_flashphoner.properties/

When H264 + AAC stream published on WCS server is played with AAC sample rate 11025 Hz,
sound is distorted or absent

Do not use 11025 Hz sample rate, or escape AAC sound resampling to this rate, for example, do
not set this sample rate in SDP settings.

5. Some RTMP functions does not supported and will be ignored

FCSubscribe

FCPublish

FCUnpublish

onStatus

onUpstreamBase

releaseStream

6. Some RTMP-encoders does not support Keep Alive

Disconnection occurs often while stream publishing with RTMP-encoder.

Switch Keep Alive off for RTMP on the server using the following parameter
in �ashphoner.properties �le

7. When stream published with RTMP encoder is played as HLS, freezes may
occur if GOP is not multiple of FPS of �le published

Symptoms

Solution

Symptoms

Solution

keep_alive.enabled=websocket,rtmfp

file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/Working_with_the_server/Core_settings/SDP_settings_files/
file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/Working_with_the_server/Core_settings/Settings_file_flashphoner.properties/

Freezes occur when RTMP stream is played as HLS

In RTMP encoder settings, assign GOP to value equal or multiple of FPS of �le published. For
example, when publishing �le with FPS 25 set GOP to 50.

8. When stream published with RTMP encoder is played as WebRTC, stream
audio has low quality

Sound is good enogh for speech but not for music when RTMP is played as WebRTC

Set Opus encoding bitrate as published one, for example

if RTMP stream is published with audio bitrate 160 kbps

9. High CPU load when stream H264+speex is published (for example, using
Flash client) with audio transcoding

High CPU load while audio transcoding from speex to AAC or Opus

Use native speex decoder implementation

Symptoms

Solution

Symptoms

Solution

opus.encoder.bitrate=160000

Symptoms

Solution

use_speex_java_impl=false

10. Stream with unsupported codecs cannot be published

RTMP stream with MP3 or AC3 audio is not publishing with the following warnings in server log

Reencode stream to supported codecs using appropriate encoder settings

Symptoms

11:01:00,921 WARN ServerHandler - RTMP-pool-15-thread-1 Codecs not
supported!

Solution

