
Working with chat rooms

Overview

Web Call Server allows embedding of a video chat to your project, that will work on most of
modern browsers without installing third-party software as well as on mobile devices.

Supported platforms and browsers

Chrome Firefox Safari Edge

Windows ✅ ✅ ❌ ✅

Mac OS ✅ ✅ ✅ ✅

Android ✅ ✅ ❌ ✅

iOS ✅ ✅ ✅ ✅

Supported codecs

Video: H.264, VP8

Audio: Opus, G.711

Functions

Video chat

Text chat

Video conference

Video conference with screen sharing

Operation �owchart

1. The browser of the participant 1 connects to the server via Websocket and sends the
join command.

2. The browser of the participant 1 can send a stream via WebRTC to publish it in the chat
room and receive streams published in the room.

3. The browser of the participant 2 connects to the server using Flash and sends the join
command.

4. The browser of the participant 2 can send a stream via RTMP to publish it in the chat
room and receive streams published in the room.

Quick testing

Video conference testing

1. For the test we use:

2. the demo server at demo.flashphoner.com

3. the Conference web application to arrange a video conference.

4. Open the Conference web application. In the Login �eld enter any arbitrary user name,
for example test :

https://demo.flashphoner.com/client2/examples/demo/streaming/conference/conference.html

5. Click the Join button. A connection with the server is established, and you should see
the corresponding ESTABLISHED label. The chat room is automatically created:

In the bottom of the screen, an image from the web camera, a text chat and a link to
invite users to the room are shown:

6. Copy the link to the chat room and open it in a new tab of the browser. Enter a user name
other than the name of the chat room creator, for example, test2 , and click the Join
button. The page will display an image from the web camera of the test participant

(left) and from the web camera of the test2 participant (below):

7. In the text chat window of the test2 participant enter a message and click Send :

8. On the browser tab of the test participant enter an answer:

9. Make sure the answer is received:

10. To leave the chat room, click the Leave button

Video chat testing

1. For the test we use:

2. the demo server at demo.flashphoner.com

3. the Two Way Video Chat web application to arrange a video chat

4. Open the Two Way Video Chat web application. In the Login �eld enter any arbitrary
user name, for example test :

5. Click the Join button. A connection is established to the server, and the corresponding
ESTABLISHED label is shown. The chat room is automatically created:

https://demo.flashphoner.com/client2/examples/demo/streaming/video-chat/video-chat.html

Below the screen, a text chat and a link to invite other users to the room are shown:

6. Copy the link to the chat room and open it in a new tab of the browser. Enter a user name
other than that of the creator of the room, for example, test2 , and click the Join
button. The page will display a large image from the web camera of the test user and a

smaller image from the web camera of the test2 user (in the lower left corner):

7. In the text chat box, enter a message and click the Send button:

8. On the tab of the test user enter an answer:

9. Make sure the answer is received:

10. To leave the chat room, click the Leave button

Video conference with screen sharing testing

1. For the test we use:

2. the demo server at demo.flashphoner.com

3. the Two Way Video Chat and Screen Sharing web application to organize a video
conference

4. the Chrome browser

5. Open the Two Way Video Chat and Screen Sharing web application. In the Login �eld
enter any arbitrary user name, for example test . Click the Join button. A connection is
established to the server, and the corresponding ESTABLISHED label is displayed. The

https://demo.flashphoner.com/client2/examples/demo/streaming/video-chat-and-screen-sharing/video-chat-and-screen-sharing.html

chat room is created automatically, and an image from the web camera is shown:

6. Copy the link to the chat room and open it in a new tab of the browser. Enter a user name
different from the name of the chat room's creator, for example test2 , and click the
Join button. The page displays an image from the web camera:

7. Click the Share button and allow the browser to gain access to your screen or to the
application window:

8. On the tab of the test user you should see the screen or the app window you allowed
the browser to access:

9. To leave the chat room, click the Leave button

Call Flow
Below is the call �ow when using the Conference example.

conference.html

conference.js

https://github.com/flashphoner/flashphoner_client/blob/230d7d9200fa4dade472a1991b0d0ff3354e759c/examples/demo/streaming/conference/conference.html
https://github.com/flashphoner/flashphoner_client/blob/230d7d9200fa4dade472a1991b0d0ff3354e759c/examples/demo/streaming/conference/conference.js

1. Participant 1 establishes a connection to the server
RoomApi.connect() code

connection = RoomApi.connect({urlServer: url, username:
username}).on(SESSION_STATUS.FAILED, function(session){
 setStatus('#status', session.status());
 onLeft();
}).on(SESSION_STATUS.DISCONNECTED, function(session) {
 setStatus('#status', session.status());
 onLeft();
}).on(SESSION_STATUS.ESTABLISHED, function(session) {
 setStatus('#status', session.status());
 joinRoom();
});

https://github.com/flashphoner/flashphoner_client/blob/230d7d9200fa4dade472a1991b0d0ff3354e759c/examples/demo/streaming/conference/conference.js#L90

2. Participant 1 receives from the server an event con�rming successful connection
SESSION_STATUS.ESTABLISHED code

3. Participant 1 joins the chat room
Session.join() code

4. Participant 1 receives from the server an event describing the state of the room
ROOM_EVENT.STATE code

connection = RoomApi.connect({urlServer: url, username:
username}).on(SESSION_STATUS.FAILED, function(session){
 ...
}).on(SESSION_STATUS.DISCONNECTED, function(session) {
 ...
}).on(SESSION_STATUS.ESTABLISHED, function(session) {
 setStatus('#status', session.status());
 joinRoom();
});

connection.join({name: getRoomName()}).on(ROOM_EVENT.STATE, function(room)
{
 ...
});

connection.join({name: getRoomName()}).on(ROOM_EVENT.STATE, function(room)
{
 var participants = room.getParticipants();
 console.log("Current number of participants in the room: " +
participants.length);
 if (participants.length >= _participants) {
 console.warn("Current room is full");
 $("#failedInfo").text("Current room is full.");
 room.leave().then(onLeft, onLeft);
 return false;
 }
 setInviteAddress(room.name());
 if (participants.length > 0) {
 var chatState = "participants: ";
 for (var i = 0; i < participants.length; i++) {
 installParticipant(participants[i]);
 chatState += participants[i].name();
 if (i != participants.length - 1) {
 chatState += ",";
 }
 }
 addMessage("chat", chatState);
 } else {
 addMessage("chat", " room is empty");
 }
 publishLocalMedia(room);
 onJoined(room);
 ...
});

https://github.com/flashphoner/flashphoner_client/blob/230d7d9200fa4dade472a1991b0d0ff3354e759c/examples/demo/streaming/conference/conference.js#L96
https://github.com/flashphoner/flashphoner_client/blob/230d7d9200fa4dade472a1991b0d0ff3354e759c/examples/demo/streaming/conference/conference.js#L103
https://github.com/flashphoner/flashphoner_client/blob/230d7d9200fa4dade472a1991b0d0ff3354e759c/examples/demo/streaming/conference/conference.js#L103

5. Participant 1 publishes the media stream
Room.publish() code

6. Participant 1 receives from the server an event con�rming successful publishing of the
stream
STREAM_STATUS.PUBLISHING code

7. Participant 1 sends the stream via WebRTC

8. Participant 2 establishes a connection to the server

9. Participant 2 receives from the server an event con�rming successful connection

10. Participant 2 enters the chat room

11. Participant 2 receives from the server an event describing the state of the room

12. Participant 1 receives from the server an event informing that participant 2 has joined
ROOM_EVENT.JOINED code

room.publish({
 display: display,
 constraints: constraints,
 record: false,
 receiveVideo: false,
 receiveAudio: false
 ...
});

room.publish({
 ...
}).on(STREAM_STATUS.FAILED, function (stream) {
 ...
}).on(STREAM_STATUS.PUBLISHING, function (stream) {
 setStatus("#localStatus", stream.status());
 onMediaPublished(stream);
}).on(STREAM_STATUS.UNPUBLISHED, function(stream) {
 ...
});

connection.join({name: getRoomName()}).on(ROOM_EVENT.STATE, function(room)
{
 ...
}).on(ROOM_EVENT.JOINED, function(participant){
 installParticipant(participant);
 addMessage(participant.name(), "joined");
}).on(ROOM_EVENT.LEFT, function(participant){
 ...
}).on(ROOM_EVENT.PUBLISHED, function(participant){
 ...
}).on(ROOM_EVENT.FAILED, function(room, info){
 ...
}).on(ROOM_EVENT.MESSAGE, function(message){

https://github.com/flashphoner/flashphoner_client/blob/230d7d9200fa4dade472a1991b0d0ff3354e759c/examples/demo/streaming/conference/conference.js#L258
https://github.com/flashphoner/flashphoner_client/blob/230d7d9200fa4dade472a1991b0d0ff3354e759c/examples/demo/streaming/conference/conference.js#L268
https://github.com/flashphoner/flashphoner_client/blob/230d7d9200fa4dade472a1991b0d0ff3354e759c/examples/demo/streaming/conference/conference.js#L135

13. Participant 2 receives the stream published by participant 1

14. Participant 2 publishes the media stream

15. Participant 2 receives from the server an event con�rming successful publishing of the
stream

16. Participant 2 sends the stream via WebRTC, participant 1 receives this stream

17. Participant 1 leaves the chat room
Room.leave() code

18. Participants of the room receive from the server an event informing that participant 1
has left the room
ROOM_EVENT.LEFT code

How to record streams published by room participants
Video streams published by room participants may be recorded. To do this, record
parameter must be set to true while publishing a stream:

 ...
});

function onJoined(room) {
 $("#joinBtn").text("Leave").off('click').click(function(){
 $(this).prop('disabled', true);
 room.leave().then(onLeft, onLeft);
 }).prop('disabled', false);
 ...
}

connection.join({name: getRoomName()}).on(ROOM_EVENT.STATE, function(room)
{
 ...
}).on(ROOM_EVENT.JOINED, function(participant){
 ...
}).on(ROOM_EVENT.LEFT, function(participant){
 //remove participant
 removeParticipant(participant);
 addMessage(participant.name(), "left");
}).on(ROOM_EVENT.PUBLISHED, function(participant){
 ...
}).on(ROOM_EVENT.FAILED, function(room, info){
 ...
}).on(ROOM_EVENT.MESSAGE, function(message){
 ...
});

room.publish({
 display: display,

https://github.com/flashphoner/flashphoner_client/blob/230d7d9200fa4dade472a1991b0d0ff3354e759c/examples/demo/streaming/conference/conference.js#L31
https://github.com/flashphoner/flashphoner_client/blob/230d7d9200fa4dade472a1991b0d0ff3354e759c/examples/demo/streaming/conference/conference.js#L138
file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/Streaming_video_functions/Captured_stream_management/Stream_recording/

A stream from any participant is recorded to a separate �le. The issue of record �les futher
processing is that they starts not at the same time.

Stream records synchronization

The feature is not supported sinsce build 5.2.142. Use stream mixer or multirecording instead.

To allow streams merging, room streams may be synchronized by the �rst stream published.
To enable this feature set the following parameter in �ashphoner.properties �le

For example, if User1 participant started publishing stream at 00:00:10, and User2
participant did it at 00:00:55, then second participant will get 45 seconds of empty video
(black screen and silence) at record beginning. So, stream record �les User1.mp4 and
User2.mp4 will be same in duration, and they can be merged.

Merging synchronized stream records using ffmpeg

Synchronized stream record �les can be merged in chronological order using ffmpeg. To
allow this, when stream is created, stream timeshift relative to room creation time is
speci�ed on server side. Stream record �les written by this way are merged with command
(two participants example)

Where

stream1 - �rst participant stream

stream2 - second participant stream

Room multiple streams recording to one �le with subsequent mixing

Since WCS build 5.2.1012 and WebSDK build 2.0.190 it is possible to record all the room
streams to one �le, with automatic mixing after �nishing a conference. To do this, a �rst
participant should set room record option while creating a room:

 constraints: constraints,
 record: true,
 ...
});

Warning

enable_empty_shift_writer=true

ffmpeg -i stream1.mp4 -i stream2.mp4 -filter_complex "[0:v]pad=iw*2:ih[int];
[int][1:v]overlay=W/2:0[vid];[0:a][1:a]amerge[a]" -map [vid] -map "[a]" -ac 2
-strict -2 -c:v libx264 -crf 23 -preset veryfast output.mp4

https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.142.tar.gz
file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/Stream_mixer_functions/Stream_mixer/
file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/Working_with_the_server/Core_settings/Settings_file_flashphoner.properties/
https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.1012.tar.gz
https://flashphoner.com/downloads/builds/flashphoner_client/wcs_api-2.0/flashphoner-api-2.0.190-21e4eb154abdd39b55320a00298361459271ed96.tar.gz

In this case, all the room streams will be recorded to one �le.When the room is �nalized, the
recording will also be stopped, and the script set in the following parameter will be
automatically launched

The script will mix multiple streams recorded acoording to mixer settings de�ned in
/usr/local/FlashphonerWebCallServer/conf/offline_mixer.json �le, by default

Room recording testing

1. For test we use:

2. WCS server, for example test1.flashphoner.com

3. Conference web application example

4. Open Conference example in browser, enter participant name Alice and set Record
checkbox

connection.join({
 name: getRoomName(),
 record: true
}).on(ROOM_EVENT.STATE, function(room){
 ...
});

on_multiple_record_hook_script=on_multiple_record_hook.sh

{
 "hasVideo": "true",
 "hasAudio": "true",
 "mixerDisplayStreamName": true
}

file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/Streaming_video_functions/Captured_stream_management/Stream_recording/#multiple-stream-recording-to-one-file-with-subsequent-mixing

5. Click Join . Stream publishing will start

6. Open Invite link in another browser window

7. Enter participant name Bob and click Join

8. Bob joined to the room

9. Click Leave in Alice participant window

and in Bob participant window

10. Recording �le mixing may take a long time depending on recording length, CPU and dick
I/O performance. When miximg is done, download the �le from
/usr/local/FlashphonerWebCallServer/records folder or open in browser by
/client/records link

Room �nalizing

Room exists until at least one participant is connected. When the lastparticipant calls
Room.leave() function, the room is �nalized.

If the last participant refreshes web page or loses server connection without calling
Room.leave() , the room will be active during the time interval set by the following parameter
in milliseconds

By default, the interval is 60 seconds. When time is expired, the room is �nalized.

Known issues

1. Non-latin characters should be encoded while messaging

When message sent contains non-latin characters, they are replaced with questionmarks on
receiving end

Use JavaScript functions encodeURIComponent() while sending a message

and decodeURIComponent() while receiving message

2. A race condition may occur when Room.leave() and then Session.join()
are subsequently called too fast

room_idle_timeout=60000

Symptoms

Solution

var participants = room.getParticipants();
for (var i = 0; i < participants.length; i++) {
 participants[i].sendMessage(encodeURIComponent(message));
}

connection.join({name: getRoomName(), record:
isRecord()}).on(ROOM_EVENT.STATE, function(room) {
...
}).on(ROOM_EVENT.MESSAGE, function(message){
 addMessage(message.from.name(), decodeURIComponent(message.text));
});

When Session.join() and then Room.leave() are called too fast, it is possible to send join
command to the server while it still handles previous leave command for this user

When Session.join() is called right after Room.leave() , client may receive a message

Use at least 1 second interval between Room.leave() and Session.join() subsequent calls

Symptoms

Room already has user with such login

Solution

