
WCS Core logs

Logging settings

WCS Core logging is handled by the log4j.properties con�g and a number of settings in �ashphoner.properties:

Logging settings in flashphoner.properties

Setting Default value

client_log_level INFO

client_dump_level 0

enable_extended_logging true

Logs are stored to /usr/local/FlashphonerWebCallServer/logs

client_logs - WCS client session logs collected on the server side

server_logs - general logs collected on the server side.

Logging settings in log4j.properties

This is a standard con�g of the log4j format.

Settings description

file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/Working_with_the_server/Core_settings/Settings_file_log4j.properties/
file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/Working_with_the_server/Core_settings/Settings_file_flashphoner.properties/
http://logging.apache.org/log4j

Attribute Value DescriptionAttribute Value Description

log4j.rootLogger info, stdout, fAppender Root logger:
- info - INFO logging level. More
detailed levels, for example,
DEBUG and TRACE , and less detail
ed, for example, ERROR are availab
le
- stdout, fAppender - set how a
nd where logs are written

log4j.logger.incoming.Publication info, incoming_publication SIP calls statistics logger for the tr
a�c incoming from a SIP server:
- info - logging level
- incoming_publication - sets h
ow and where logs are written

log4j.logger.outgoing.Publication info, outgoing_publication SIP calls statistics logger for the tr
a�c outgoing to a SIP server:
- info - logging level
- incoming_publication - sets h
ow and where logs are written

log4j.logger.pushLogs.Flashphone
rHandler

Not used Not used

log4j.additivity.incoming.Publicati
on

false Do not add these logs to the gener
al log, writing them as individual lo
gs instead

log4j.additivity.outgoing.Publicatio
n

false Do not add these logs to the gener
al log, writing them as individual lo
gs instead

log4j.logger.sipMessages debug Put incoming and outgoing SIP me
ssages to the log

log4j.logger.WSServerHandler trace Put outgoing Websocket message
s to the log

log4j.logger.WSClient debug Put incoming Websocket message
s to the log

log4j.appender.stdout org.apache.log4j.ConsoleAppe
nder

Write logs to stdout

log4j.appender.fAppender org.apache.log4j.DailyRollin
gFileAppender

Write logs to a �le

log4j.appender.incoming_publicati
on

org.apache.log4j.DailyRollin
gFileAppender

Write RTMFP incoming publication
statistics to a �le

log4j.appender.outgoing_publicati
on

org.apache.log4j.DailyRollin
gFileAppender

Write RTMFP outgoing publication
statistics to a �le

log4j.appender.clientLog org.apache.log4j.DailyRollin
gFileAppender

Not used

Logging settings hot swapping

WCS automatically catches changes made to the log4j.properties �le. This is convenient for debugging purposes and to
receive additional logs without restarting the server. For instance, when you need to enable more detailed logs and change
the output format of logs. However, for higher reliability during production, we recommend restarting the WCS server
nevertheless.

Websocket messages tracing

For debugging purpose, or to develop your own API, all Websocket messages tracing except transport ones may be
enabled. To log all incoming/outgoing Websocket messages to websocket.log �le
in /usr/local/FlashphonerWebCallServer/logs/server_logs directory, the following strings should be added
to log4j.properties �le:

Client logs

Switching on, off and managing logging level

Client logs are server side client session logs. Client logs are only written to client_logs if the following parameter is set
(by default)

To switch client logging off set the following in �ashphoner.properties �le

You can con�gure the logging detail level using the client_log_level setting that can assume the following values:
ERROR , INFO , DEBUG , TRACE , default is

It is recommended to use cron in conjuction with �nd to periodically purge client logs. For example, to check for outdated
logs every 24 hours and delete all logs older than 30 days add the following cron task

Enabling debug log for all the client sessions

To diagnose a problem, sometimes it is necessary to enable debug logging for all newly connected client sessions, to write
to client logs connection establishing process and stream publishing start. This feature can be enabled since
build 5.2.512 with the following parameter

For all newly connected clients debug logs will be recorded during interval de�ned with the following parameter in seconds

By default client debug logs will be written in 60 seconds for each session connected.

These settings can be changed with CLI and applied without server restart.

Using �ight recorder

Flight recorder function allows to cyclically write some latest events for stream published. This information may help to
diagnose problems with stream publishing without full client debug logs enabling. Flight recorder is enabled with the
following parameter in �ashphoner.properties �le

It is necessary to set events category that will be written (de�ned by developer)

log4j.logger.WSServerHandler=trace, wsAppender
log4j.logger.WSClient=debug, wsAppender
log4j.appender.wsAppender=org.apache.log4j.DailyRollingFileAppender
log4j.appender.wsAppender.DatePattern='.'yyyy-MM-dd-HH
log4j.appender.wsAppender.layout=org.apache.log4j.PatternLayout
log4j.appender.wsAppender.layout.ConversionPattern=%d{HH:mm:ss,SSS} %-5p %20.20c{1} - %t %m%n
log4j.appender.wsAppender.File=${com.flashphoner.fms.AppHome}/logs/server_logs/websocket.log

enable_extended_logging=true

enable_extended_logging=false

client_log_level=INFO

0 0 * * * find /usr/local/FlashphonerWebCallServer/logs/client_logs/ -type d -mtime +30 | xargs rm -rf

client_log_force_debug=true

client_log_force_debug_timeout=60

enable_flight_recorder=true

flight_recorder_categories=WCS1438

file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/Working_with_the_server/Core_settings/Settings_file_flashphoner.properties/
https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.512.tar.gz
file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/Working_with_the_server/Command_line_interface/Server_settings_management/#change-a-specific-option-in-the-server-settings
file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/Working_with_the_server/Core_settings/Settings_file_flashphoner.properties/

The events are written for publisher client to flight_recorder.log �le, if stream publishing stops by some error, or stream
is corrupted by some way.

To test �ight recorder, the parameter should be set

without restarting WCS server. It saves the events to �le for all publishers connected.

The enable_flight_recorder_test parameter is not intended to use in production

Client log structure and content

Client logs structure:

flashphoner.log �le

Client logs are recorded to client_logs by dates. For each date, a directory is created with the name formatted as YYYY-
MM-DD , for instance, 2018-05-16 .

When a client establishes connection to the server, a folder for the current client session is created inside the date folder, for
example, 84gij60a6u3ni7docsr1di1l5b-15-06-59 , where 84gij60a6u3ni7docsr1di1l5b is a session login, 15 is hours,
06 is minutes, 59 is seconds. In the directory the flashphoner.log �le is written, which contains only those server events
that are relevant to this speci�c client session. Hence, we see when the client connected to the server, and what logs were
recorded for this client's session.

client-report �le

This is an additional client log. The web client has a special WCS JavaScript API function pushLog . This function sends to
the WCS server logs recorded on the browser side. All logs received from the web client using pushLog are saved on the
server. When the web client ends a session with the WCS server, the received logs are recorded to the client-
84gij60a6u3ni7docsr1di1l5b-2018.05.16.15.07.26-1526458046646.report �le, where 84gij60a6u3ni7docsr1di1l5b is a
session login, 2018 is year, 05 is month, 26 is day, 15 is hours, 07 is minutes, 26 is seconds, 1526458046646 is
milliseconds.

Media tra�c dumps

If a non-zero value is set for the client_dump _level` setting in the �ashphoner.properties settings �le, a dump session is
additionally recorded for a client:

if client_dump_level=1 , only SIP tra�c is recorded;

if client_dump_level=2 , all media tra�c is recorded.

Tra�c is recorded using tcpdump, if this utility is installed in the system.

flight_recorder.log �le

Last events for stream published are written to this �le.

Client Logging level managing "on the �y"

enable_flight_recorder_test=true

Warning

client_logs
---- 2018-05-16
-------- 84gij60a6u3ni7docsr1di1l5b-15-06-59
------------ flashphoner.log
------------ client-84gij60a6u3ni7docsr1di1l5b-2018.05.16.15.07.26-1526458046646.report
------------ MediaDump-85d65b00-639e-4a7e.31002-31004-31006-31008.pcap

file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/Working_with_the_server/Core_settings/Settings_file_flashphoner.properties/

Logging level for certain session may be changed on the go, without server restart. To do this, REST API is used

REST query should be HTTP/HTTPS POST request such as:

HTTP: http://test.flashphoner.com:8081/rest-api/logger/enable_client_log

HTTPS: https://test.flashphoner.com:8444/rest-api/logger/enable_client_log

Here:

test.flashphoner.com is WCS server address

8081 is WCS standard REST / HTTP port

8444 is WCS standard HTTPS port

rest-api is required URL pre�x

/logger/enable_client_log is REST method used

REST methods and responses

/logger/enable_client_log

Set the logging level speci�ed in session speci�ed

REQUEST EXAMPLE

RESPONSE EXAMPLE

RETURN CODES

Code Reason

200 OK

404 Session not found

/logger/disable_client_log

Fully disable logging in session speci�ed

REQUEST EXAMPLE

RESPONSE EXAMPLE

POST /rest-api/logger/enable_client_log HTTP/1.1
Host: localhost:8081
Content-Type: application/json

{
 "sessionId": "/127.0.0.1:57539/192.168.1.101:8443",
 "logLevel": "DEBUG"
}

HTTP/1.1 200 OK
Access-Control-Allow-Origin: *
Content-Type: application/json

POST /rest-api/logger/disable_client_log HTTP/1.1
Host: localhost:8081
Content-Type: application/json

{
 "sessionId": "/127.0.0.1:57539/192.168.1.101:8443"
}

HTTP/1.1 200 OK
Access-Control-Allow-Origin: *

RETURN CODES

Code Reason

200 OK

404 Session not found

Parameters

Parameter name Description Example

sessionId Session Id /127.0.0.1:57539/192.168.1.1
01:8443

logLevel Logging level to set DEBUG

Thus, when problem occurs with stream published on server (for example, the stream is published but cannot be played),
REST query should be sent to server to switch logging level to DEBUG and then, when problem is reproduced and data are
collected, to switch logging level back to INFO. Also it is possible to switch logging off in certain client session.

Logging level changes with REST queries affects only the session speci�ed, but not another sessions including sessions
that will be created later.

Server logs
WCS writes general server logs to /usr/local/FlashphonerWebCallServer/logs/server_logs folder

In these logs you can track start of the server and its starting settings:

Server startup

Shutting down the server

Content-Type: application/json

server_logs
---- flashphoner.log
---- flashphoner.log.2018-05-17-16

tail -f /usr/local/FlashphonerWebCallServer/logs/server_logs/flashphoner.log

Licensing information:

Besides, REST hooks queries information is displayed in server logs:

Therefore, server logs show general information about server operation. You can receive more detailed information in logs
that are recorded individually for each client session.

CDR logs

Сall Detail Record is a SIP calls log.

CDR records are added to a log �le located at /usr/local/FlashphonerWebCallServer/logs/cdr/cdr.log . A new log �le is
created every 24 hours. Data are recorded as a CSV �le, so they can be easily processed.

Field names are not recorded to the �le.

Record format:

Record example:

08:01:06,649 INFO RestClient - API-ASYNC-pool-8-thread-2 SEND REST OBJECT ==>
URL:http://localhost:8081/EchoApp/StreamStatusEvent
OBJECT:
{
 "nodeId" : "rR3YA7yKB11iIIID4XkYveTF8ePhezMU@0.0.0.0",
 "appKey" : "defaultApp",
 "sessionId" : "/5.44.168.45:58541/95.191.131.65:8443",
 "mediaSessionId" : "58488550-99dd-11e8-bf13-9b5947c0a0f5",
 "name" : "569a",
 "published" : true,
 "hasVideo" : true,
 "hasAudio" : true,
 "status" : "PUBLISHING",
 "audioCodec" : "opus",
 "videoCodec" : "H264",
 "info" : "Unknown",
 "record" : false,
 "width" : 0,
 "height" : 0,
 "bitrate" : 0,
 "minBitrate" : 0,
 "maxBitrate" : 0,
 "quality" : 0,
 "timeShift" : -1,
 "createDate" : 1533603665644,
 "mediaProvider" : "WebRTC",
 "history" : false,
 "origin" : "https://test.flashphoner.com:8888"
}

src;dst;cid;start;answer;end;billsec;disposition

Field Description

src Caller

dst Callee

cid Call identi�er

start Call start (date and time)

answer Date and time the call is answered by the subscriber
or the SIP side

end Date and time the call ended

billsec Time in seconds between answer and end

disposition Call result: ANSWERED , NO_ANSWER , BUSY , FAILED

MDR logs

Message Detail Record is a SIP messages log.

MDR records are added to a log �le located at /usr/local/FlashphonerWebCallServer/logs/cdr/mdr.log . A new log �le is
created every 24 hours. Data are recorded as a CSV �le, so they can be easily processed.

Field names are not recorded to the �le.

Record format:

Record example:

Field Description

date Date and time of the message

msgId Message identi�er

from SIP from

to SIP to

disposition Message result: RECEIVED, SENT, FAILED
- RECEIVED - the message is received.
- SENT - the message is sent.
- FAILED - there were an error while sending the mes
sage.

You can also gather any message statistics and their statuses you need using WCS REST hooks.

SDR logs

Stream Detail Record is a stream publishing and playing session logs.

SDR records are written to the �le located at /usr/local/FlashphonerWebCallServer/logs/cdr/sdr.log . A new log �le is
created every 24 hours. Data are recorded as a CSV �le, so they can be easily processed.

3000;3001;f294f6116bf2cc4c725f20457ed76e5b@192.168.56.2;2014-11-21 15:01:37; 2014-11-21 15:01:41; 2014-
11-21 15:02:45;64;ANSWERED

date,msgId,from,to,disposition

Fri Dec 26 15:26:16 NOVT 2014,null,A006,A005,RECEIVED

file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/REST_Hooks/The_list_of_methods_and_their_parameters/

Field names are not recorded to the �le.

Record format:

Record example:

Field Description

start Date and time the session started

mediaProvider The media provider used in WCS JavaScript API: Web
RTC, Flash, MSE

name Name of the published / played stream

mediaSessionId Media session identi�er

duration Duration of the session

disposition Session result: UNPUBLISHED, STOPPED, FAILED
- UNPUBLISHED - publishing of the stream was stopp
ed
- STOPPED - playing of the stream was stopped
- FAILED - incorrect session end

info If disposition==FAILED , this �eld contains the des
cription of the reason

type PUBLISH if publishing the stream
SUBSCRIBE if playing the stream

subscribers The number of subscribers in case of publishing the s
tream; 0 if playing the stream

CONNDR logs

Connection Detail Record is a WebSocket sessions log.

CONNDR records are written to the �le located at /usr/local/FlashphonerWebCallServer/logs/cdr/conndr.log . A new
log �le is created every 24 hours. Data are recorded as a CSV �le, so they can be easily processed.

Field names are not recorded to the �le.

Record format:

Record example:

Field Description

start Date and time the session started

mediaSessionId Media session identi�er

disposition Session result: DISCONNECTED, FAILED
DISCONNECTED - the session ended by client's initiati
ve
FAILED - incorrect session end

start;mediaProvider;name;mediaSessionId;duration;disposition;info;type;subscribers;

2015-11-11 08:36:13;Flash;stream-Bob;5c2d75c0-7d87-421d-aa93-
2732c48d8eaa;00:00:48;UNPUBLISHED;;PUBLISH;3;

start;mediaSessionId;disposition;info;duration;

2018-04-25 19:29:08;/5.44.168.45:52199/95.191.131.64:8443;DISCONNECTED;Normal disconnect;17;

Field Description

info Contains information about the session end

duration Duration of the session

GC logs
By default garbage collector log �les are located in /usr/local/FlashphonerWebCallServer/logs directory.

The location and pre�x of the log �les can be con�gured in wcs-core.properties �le.

To enable log rotation by the JVM, the following options can be added to wcs-core.properties:

Then the log �les will have names like

File with su�x current is the �le currently being recorded.

To remove creation time from log �le names, remove date from variable GC_SUFFIX in
/usr/local/FlashphonerWebCallServer/bin/setenv.sh :

Then the log �les will have names like

Mediasessions statistics logs

Since build 5.2.1883 a current mediasessions statistics may be collected. The statistics may be logged to save it to a �le
when mediasession is closed.

The mediasessions statistics is logged to the /usr/local/FlashphonerWebCallServer/logs/stats/media-session-
connection-stats.log �le in CSV form

Where

mediaSessionId - mediasession id

channels_not_writable - TCP channels not writable events count

logs
---- gc-core-2018-12-18_20-02.log
---- gc-core-2018-12-18_19-56.log

-XX:+UseGCLogFileRotation
-XX:NumberOfGCLogFiles=10
-XX:GCLogFileSize=2M

logs
---- gc-core.log2018-12-14_18-57.log.0
---- gc-core.log2018-12-14_18-57.log.1
---- gc-core.log2018-12-14_18-57.log.2
---- gc-core.log2018-12-14_18-57.log.3
---- gc-core.log2018-12-14_18-57.log.4.current

GC_SUFFIX=".log"

logs
---- gc-core.log.0
---- gc-core.log.1
---- gc-core.log.2.current

#{mediaSessionId}; {channels_not_writable}; {decodable_drops_old}; {incomplete_drops_old};
{decodable_drops_reset}; {incomplete_drops_reset}; {decodable_drops_pli}; {incomplete_drops_pli};
{data_packets_with_empty_payload}; {missed_h264_units}; {dropped_audio_data_packets}

file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/Working_with_the_server/Core_settings/Settings_file_wcs-core.properties/
file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/Working_with_the_server/Core_settings/Settings_file_wcs-core.properties/
https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.1883.tar.gz
file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/Working_with_the_server/Monitoring/Load_and_resource_usage_information/#tcp-channel-statistics

decodable_drops_old - H264 decodable frames dropped count

incomplete_drops_old - H264 incomplete frames dropped count

decodable_drops_reset - H264 decodable frames dropped before a new decoding point count

incomplete_drops_reset - H264 incomplete frames dropped before a new decoding point count

decodable_drops_pli - H264 decodable frames dropped on PLI receiving count

incomplete_drops_pli - H264 incomplete frames dropped on PLI receiving count

data_packets_with_empty_payload - data packets with empty payload sent to test a channel quality when TWCC is
enabled count

missed_h264_units - missed H264 units count, per mediasession

dropped_audio_data_packets - audio packets dropped before passing them to server engine

The record example

The statistics logging should be set up in log4j.properties �le as follows

CVE-2021-44228 vulnerability

CVE-2021-44228 vulnerability in Apache log4j library cannot be exploited on WCS server. The logger can be con�gured via
log4j.properties only, so attacker must have access to server �le system. The vulnerability cannot be exploited via input
�elds etc. Let's check:

1. Use the URL https://log4shell.huntress.com/ to check the server. This page will generate an unique link to insert to a
web page input �elds

2. Open Two Way Streaming example page on demo server
https://demo.�ashphoner.com:8888/client2/examples/demo/streaming/two_way_streaming/two_way_streaming.html,

f49f8cb0-dc52-11ee-81df-51ad589334c0; 0; 0; 7; 0; 0; 0; 10; 0; 443; 0

log4j.logger.MediaSessionConnectionStats=error, mediaSessionConnectionStatsAppender
log4j.additivity.MediaSessionConnectionStats=false
log4j.appender.mediaSessionConnectionStatsAppender=com.flashphoner.common.logging.NewLogForEachRunFileAppe

log4j.appender.mediaSessionConnectionStatsAppender.DatePattern='.'yyyy-MM-dd-HH
log4j.appender.mediaSessionConnectionStatsAppender.layout=org.apache.log4j.PatternLayout
log4j.appender.mediaSessionConnectionStatsAppender.layout.ConversionPattern=%m%n
log4j.appender.mediaSessionConnectionStatsAppender.File=${com.flashphoner.fms.AppHome}/logs/stats/media-
session-connection-stats.log

click Connect and insert the test link to stream name �elds. Publish and play a stream:

3. Open a special link to view test results. If vulnerability is exploited, IP address and Date/Time columns will show
connections from tested server:

As test shows, the CVE-2021-44228 vulnerability cannot be exploited in WCS build 5.2.1109 and later

Under the hoods: why WCS is not vulnerable

WCS uses Apache log4j 1.2.17. This old version does not support JDNI feature which is added since log4j 2.0-beta9.
Therefore, CVE-2021-44228 vulnerability cannot be exploited in WCS.

https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.1109.tar.gz
https://issues.apache.org/jira/browse/LOG4J2-313

