
Server tuning recommendations

Server default settings are mostly universal and need to be tuned to certain client case.

REST client tuning

When REST hooks are used, on every WCS server action (establishing client connection,
publishing and playing a stream, making a SIP call etc) HTTP REST connection to backend
server is established. With a large number of simultaneously publishing clients or subscribers,
with the default WCS settings it is possible to exhaust the WCS REST client thread pool, that
is lead to deadlocks. Then, server stops to publish and play streams.

By default, a maximum number of simultaneous REST connections is set to 200 with the
following parameter in �ashphoner.properties �le

To escape thred poolexhausting and deadlocks this value should be reduced, for example

If REST hooks are not used, REST client can be disabled with the following parameter

Excessive logging supression
When REST hooks are used, REST client operations, EchoApp default backend operations
and REST API server operations are written to WCS core logs. That leads to large number of
entries in the log �le and, therefore, inceases the server load. The excessive logging may be
decreased if necessary using the following parameters in log4j.properties �le:

UDP tuning

rest_max_connections=200

rest_max_connections=20

disable_rest_requests=true

log4j.logger.RestClient=WARN
log4j.logger.EchoApp=WARN
log4j.logger.RestApiRouter=WARN

file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/REST_Hooks/
file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/Working_with_the_server/Core_settings/Settings_file_flashphoner.properties/
file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/REST_Hooks/
file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/REST_Hooks/
file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/Working_with_the_server/Core_settings/Settings_file_log4j.properties/

Streaming mediadata are transferred with UDP packets. Those packets can be dropped, for
example if server does not have enough time to parse packet queue, that leads to picture
quality loss and freezes. To escape this it is necessary to tune UDP sockets buffers with the
following settings in �ashphoner.properties �le

and to tune system queues with command

To diagnose UDP problem, it is necessary to track UDP packets dropping with command

UDP socket buffers tuning on system level

If UDP is used to publish or play high bitrate streams (for instance, as CDN internal
transport), UDP socket buffers tuning may be required

In this case the server performance should be enough to handle all the tra�c packets.
Otherwise, a translation quality will drop (a freezes will appear), and CPU will become a
bottleneck.

Channel load optimization

Users' playback picture quality depends on bitrate: the higher the bitrate, the higher the
quality. However, the higher the bitrate, the higher data transfer channel load and, if the
bandwidth between the server and clients is limited, there is a possibility that the channel will
be fully loaded. This leads the bitrate dropping and a sharp decline in quality.

In this regard, it is necessary to limit the bitrate to ensure su�cient picture quality with an
acceptable channel load.

Publisher bitrate limiting

To reduce the load to the channel from publisher to server, maximum and minimum bitrate
values in kbps may be set in publisher script with JavaScript API

rtp_receive_buffer_size=131072
rtp_send_buffer_size =131072

ip link set txqueuelen 2000 dev eth0

dropwatch -l kas
>start

sudo sysctl -w net.core.rmem_max=26214400
sudo sysctl -w net.core.rmem_default=26214400

file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/Working_with_the_server/Core_settings/Settings_file_flashphoner.properties/

Server bitrate limiting

Minimum and maximum bitrate values in bps on server may be set with the following
parameters in �ashphoner.properties �le

Stream decoding on demand only must be switched on to reduce server load:

Changing dynamic ports range in Linux

Dynamic or ephemeral port is a temporary port that is opened when establishing IP-
connection from certain range of TCP/IP stack. Many Linux kernel versions use ports range
32768 — 61000 as dymanic ports. Enter the following command to check what range is used
on server

If this range overlaps with WCS standard ports, it should be changed with the following
command

Adjusting the maximum number of opened �les

Legacy settings (before build 5.2.762)

In the launch script webcallserver that is in subfolder bin in WCS home folder, for example

session.createStream({
 name: streamName,
 display: localVideo,
 constraints: {
 video: {
 minBitrate: 500
 maxBitrate: 1000
 }
 }
 ...
}).publish();

webrtc_cc_min_bitrate=500000
webrtc_cc_max_bitrate=1000000

streaming_video_decoder_fast_start=false

sysctl net.ipv4.ip_local_port_range

sysctl -w net.ipv4.ip_local_port_range="59999 63000"

file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/Working_with_the_server/Core_settings/Settings_file_flashphoner.properties/
file:///opt/TeamCityAgent/work/e8d9ff752ef6fac0/site/WCS52/Working_with_the_server/Architecture/Server_core_WCS_Core_/
https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.762.tar.gz

in start() function the maximum number of opened �les is set

By default, this value is set to 20000, but it may be increased if necessary, following the
limitations of the operating system used.

Using environment variable (since build 5.2.762)

Since build 5.2.762, maximum opened �les limit can be set using the following environment
variable

in setenv.sh �le. When updating WCS from previous builds, this variable should be added to
setenv.sh manually, for example

Unlike the webcallserver startup script, the setenv.sh �le is not overwritten on
subsequent updates, therefore it is not necessary to restore this setting after every update.

Using service parameter while launching from non-root user (since
build 5.2.801)

Since build 5.2.801, WCS is launching from '�ashphoner' user for better security. In this
case, maximum opened �les limit can be set using service parameters

Maximum opened �les limit is set with LimitNOFILE parameter, for example

/usr/local/FlashphonerWebCallServer/bin/webcallserver

function start() {
 ...
 echo -n $"$PRODUCT: starting"

 ulimit -n 20000
 if [["$1" == "standalone"]]; then
 ...
 fi
 ...
}

WCS_FD_LIMIT=20000

export WCS_FD_LIMIT=100000

sudo nano /etc/systemd/system/webcallserver.service

[Service]
User=flashphoner
Group=flashphoner

https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.762.tar.gz
https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.762.tar.gz
https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.801.tar.gz
https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.801.tar.gz

Internal command to change �le descriptors limit

Since build 5.2.1255 the following command can be used to set �le descriptors limit:

WCS will be stopped before settings changing and will be automatically started after settings
changing to apply them.

If a new value is less than the default one (20000), erroe message will be displayed, and
changes will not be applied.

Tra�c encryption in a separate thread for each client session

By default, one CPU thread encrypts medai tra�c for all the client sessions. This leads to one
CPU core overload by such thread, espacyally on low-power servers, for big subscribers
amount. Then, server can not send mediapackets to all subscribers, and streams viewed are
degrading, FPS lowering and freezing.

To distribute the load evenly across the CPU cores, it is necessary to enable tra�c encryption
in a separate thread for each client session with the following parameters

and restart WCS.

Stream distribution optimization
A stream playback quality may drop when a number of subscribers are viewing it
simutlaneouly (from 100 and more): low FPS, freezes. However, server capacity and channel
bandwidth may be enough. In this case it is recommended to enable multithreaded stream
distribution to subscribers using the following parameter

In this case, audio and video client sessions are distributed by groups.

Maximum number of video sessions per group can be set with the following parameter

LimitNOFILE=100000
...

sudo ./webcallserver set-fd-limit 100000

rtp_paced_sender=true
rtp_paced_sender_initial_rate=200000
rtp_paced_sender_increase_interval=50
rtp_paced_sender_k_up=0.9

streaming_distributor_subgroup_enabled=true

https://flashphoner.com/downloads/builds/WCS/5.2/FlashphonerWebCallServer-5.2.1255.tar.gz

Maximum number of audio sessions per group can be set with the following parameter

Frame queue size per group and maximum frame waiting time (in milliseconds) are set by the
following parameters

for video and

for audio sessions respectively.

streaming_distributor_subgroup_size=50

streaming_distributor_audio_subgroup_size=500

streaming_distributor_subgroup_queue_size=300
streaming_distributor_subgroup_queue_max_waiting_time=5000

streaming_distributor_audio_subgroup_queue_size=300
streaming_distributor_audio_subgroup_queue_max_waiting_time=5000

