
Screen Sharing

Screen sharing example

Screen sharing is available for Chrome and Firefox. To share screen in Chrome before 73 the
extension need to build and install, in the latest Chrome versions (73 and newer), Firefox and
Safari screen can be shared without extension. Today, it is not recommended to use
extension.

Extension for Google Chrome with publication in Chrome Store

Source code for the extension is available by the following link:

Chrome Screen Sharing Extension

Create a Google account

https://github.com/flashphoner/flashphoner_client/tree/89281428578df670f19be4f059d8c227885cb994/examples/demo/dependencies/screen-sharing/chrome-extension

1. Go to google.com and click Sign in button

2. On the Sign in page, click Create account link

3. Create your Google Account page will be opened
Fill the required �elds and click Next step button to create the account.

Register as Chrome Web Store Developer

1. Sign in to Chrome Developer Dashboard with the created Google account

http://google.com/
https://chrome.google.com/webstore/developer/dashboard

2. Pay a one-time $5 developer signup fee

Customization for your domain

Follow the procedures described below to use the extensions with your domain. Edit
manifest �le manifest.json of the Chrome extension.

Change:

name

author

description

homepage_url

under "externally_connectable":"matches" change flashphoner.com to your domain

Save your icons for the extension to chrome-extension directory and edit the �le names in
"icons" and "web_accessible_resources" . (For more information, see Manifest - Icons
and Supplying Images.)

Pack the extension

Pack �les from chrome-extension folder into ZIP archive.

Publish the extension

1. Sign in to Chrome Developer Dashboard

https://developer.chrome.com/apps/manifest/icons
https://developer.chrome.com/images
https://chrome.google.com/webstore/developer/dashboard

2. In the dashboard, click Add new item button

3. Accept the developer agreement

4. On the Upload page, choose the chrome-extension.zip �le and click Upload button

5. When the extension is uploaded, the page for editing the extension draft will be opened
Edit the extension as required and click Save draft and return to dashboard button
at the bottom of the page

6. The extension will appear in the developer dashboard
Click Publish link to publish the extension

A published extension will have status Published as on the image below.

For more information, see Chrome Web Store Publishing Tutorial.

Extension Inline Installation

Extension installation can be initiated by clicking a link on the Screen Sharing client page.
Note that the extension to be installed should be customized, published and approved before
inline installation can be used.

Follow the steps described below to use the client with your extensions:

https://developer.chrome.com/webstore/publish

1. When publishing, select Inline Install option

2. Verify and add website with your domain to the extension

Click Add a New Site

Google Search Console page will open in a new tab. Enter URL with your domain

A page with the instruction for the site veri�cation will open. Follow the procedure
steps and click Verify button

If the veri�cation is passed, a page con�rming successful veri�cation will be opened

The website will appear in the list in the extension options and the extension can be
associated with the site

Con�guring the client

Edit Screen-sharing.html and Screen-sharing.js

In Screen-sharing.html the chrome-webstore-item parameter should point to your
extension in the Chrome Store

In Screen-sharing.js replace the value of the chromeScreenSharingExtensionId
parameter to the ID of your extension

To get the ID of the extension, click More info of this extension in Chrome Developer
Dashboard

Media source parameters

To con�gure screen media source parameters, use parameters of the Configuration object
passed to the init() method upon initializing of the Flashphoner API instance.

Parameter list

Parameter Description

screenSharingVideoWidth Screen media source width

screenSharingVideoHeight Screen media source height

screenSharingVideoFps Screen media source framerate

These parameters set marginal values of resolution and framerate (FPS). For instance,
screenSharingVideoWidth = 1080 means the width of the source video cannot be more
than 1080 pixels, but can be less. (i.e. when sending a stream of an app window that has the
width of 720 pixels).

System sound capture in Chrome browser

In Chrome browser, there is ability to translate audio stream from system sound source while
capturing a screen. The feature is useful in screencasting, for example. To capture system
sound, set Share audio option in Chrome extension dialog window while choosing
streaming source window or browser tab:

var f = Flashphoner.getInstance();
var configuration = new Configuration();
....
configuration.screenSharingVideoWidth = 1920;
configuration.screenSharingVideoHeight = 1080;
configuration.screenSharingVideoFps = 10;
f.init(configuration);

https://chrome.google.com/webstore/developer/dashboard

Chrome extension code:

Capture source management in Firefox browser

In Firefox browser, all the screen or some program window can be chosen as video stream
source with constraints.video.mediaSource parameter

code:

Source selection interface example:

callback({sourceId: sourceId, systemSoundAccess: opts.canRequestAudioTrack});

constraints.video.type = "screen";
if (Browser.isFirefox()){
 constraints.video.mediaSource = $('#mediaSource').val();
}
session.createStream({
 name: streamName,
 display: localVideo,
 constraints: constraints
})

https://github.com/flashphoner/flashphoner_client/blob/89281428578df670f19be4f059d8c227885cb994/examples/demo/dependencies/screen-sharing/chrome-extension/background-script.js#L21
https://github.com/flashphoner/flashphoner_client/blob/c306c1bbf49bfcbd8e24be927ae95f63b7dbaaba/examples/demo/streaming/screen-sharing/screen-sharing.js#L139

Program window capture

Screen capture

Screen sharing without extension

Firefox browser

Firefox browser does not use extension to share screen

Chromium based browsers

Since Chrome 73 and Flashphoner WebSDK 0.5.28.2753.86 screen sharing is possible
without extension. To do this constraints.video.withoutExtension parameter should be
passed when stream is created

code

Safari browser in MacOS

Since Safari 13 and Flashphoner WebSDK 0.5.28.2753.152 screen sharing is possible
without extension. To do this constraints.video.withoutExtension parameter should be
passed when stream is created

code

if ($("#woChromeExtension").prop('checked')) {
 constraints.video.withoutExtension = true;
}

https://flashphoner.com/downloads/builds/flashphoner_client/wcs_api-2.0/flashphoner-api-0.5.28.2753-218c188ea896656b1ca142f02b4f58bf09bd8bf1.tar.gz
https://github.com/flashphoner/flashphoner_client/blob/584ddddd39b3eed3d1d04ef0f3900a9dc4d0f355/examples/demo/streaming/screen-sharing/screen-sharing.js#L144
https://flashphoner.com/downloads/builds/flashphoner_client/wcs_api-2.0/flashphoner-api-0.5.28.2753-44fe1b1556caa6e3a0fc18fe71114d4996afdc2a.tar.gz
https://github.com/flashphoner/flashphoner_client/blob/c8acaca916fe742166f0c5c24f6dd7e4f8160a42/examples/demo/streaming/screen-sharing/screen-sharing.js#L195

Known limits

1. In Chrome browser, picture resolution and FPS are set by source dimensions (screen,
windows or browser tab) and by real picture updating speed, not by constraints. This
issue is �xed since Flashphoner WebSDK build 0.5.28.2753.152

2. System sound capture only works starting from Crome 74

Code of the example

This example uses Flashphoner extensions for work with domain *.�ashphoner.com. For
work with your domain, build up and publish your extensions as described above.

As temporary solution, IP address of your WCS server can be added to �le
C:\Windows\System32\drivers\etc\hosts (on Windows OS) as test.�ashphoner.com. That
way, you will be able to test your WCS server with domain test.�ashphoner.com till the
extensions for your domain are built up.

With Chrome, the example works only via HTTPS.

The path to the source code of the example on WCS server is:

/usr/local/FlashphonerWebCallServer/client/examples/demo/streaming/screen-sharing

screen-sharing.css - �le with styles

screen-sharing.html - page of the screen sharing streamer

screen-sharing.js - script providing functionality for the streamer

This example can be tested using the following address:

https://host:8888/client/examples/demo/streaming/screen-sharing/screen-sharing.html

Here host is the address of the WCS server.

For Chrome, link to the extension is speci�ed directly in �le screen-sharing.html line 17

Analyzing the code

if ($("#woChromeExtension").prop('checked') || Browser.isSafari()) {
 constraints.video.withoutExtension = true;
}

<link rel="chrome-webstore-item"
href="https://chrome.google.com/webstore/detail/nlbaajplpmleofphigmgaifhoikjmbkg

https://flashphoner.com/downloads/builds/flashphoner_client/wcs_api-2.0/flashphoner-api-0.5.28.2753-44fe1b1556caa6e3a0fc18fe71114d4996afdc2a.tar.gz
https://github.com/flashphoner/flashphoner_client/blob/5fca19dc9267eb665f197aa91d5cb42504803f98/examples/demo/streaming/screen-sharing/screen-sharing.html#L17

1. Initialization of the API

Flashphoner.init() code

Chrome extension ID is passed to the init() method.

2. Connection to WCS server

Flashphoner.createSession() code

3. Receiving the event con�rming successful connection

ConnectionStatusEvent ESTABLISHED code

4. Stream constraints setting

resolution and fps code

Flashphoner.init({screenSharingExtensionId: extensionId});

Flashphoner.createSession({urlServer: url}).on(SESSION_STATUS.ESTABLISHED,
function(session){
 //session connected, start streaming
 startStreaming(session);
}).on(SESSION_STATUS.DISCONNECTED, function(){
 setStatus(SESSION_STATUS.DISCONNECTED);
 onStopped();
}).on(SESSION_STATUS.FAILED, function(){
 setStatus(SESSION_STATUS.FAILED);
 onStopped();
});

Flashphoner.createSession({urlServer: url}).on(SESSION_STATUS.ESTABLISHED,
function(session){
 //session connected, start streaming
 startStreaming(session);
}).on(SESSION_STATUS.DISCONNECTED, function(){
 ...
}).on(SESSION_STATUS.FAILED, function(){
 ...
});

var constraints = {
 video: {
 width: parseInt($('#width').val()),
 height: parseInt($('#height').val()),
 //WCS-2014. fixed window/tab sharing
 frameRate: parseInt($('#fps').val())

https://github.com/flashphoner/flashphoner_client/blob/5fca19dc9267eb665f197aa91d5cb42504803f98/examples/demo/streaming/screen-sharing/screen-sharing.js#L11
https://github.com/flashphoner/flashphoner_client/blob/5fca19dc9267eb665f197aa91d5cb42504803f98/examples/demo/streaming/screen-sharing/screen-sharing.js#L122
https://github.com/flashphoner/flashphoner_client/blob/5fca19dc9267eb665f197aa91d5cb42504803f98/examples/demo/streaming/screen-sharing/screen-sharing.js#L122
https://github.com/flashphoner/flashphoner_client/blob/5fca19dc9267eb665f197aa91d5cb42504803f98/examples/demo/streaming/screen-sharing/screen-sharing.js#L137

michrophone usage code

video source type and Chrome screen sharing without extension code

Firefox media source code

5. Video streaming

Session.createStream() , Stream.publish() code

6. Receiving the event con�rming successful streaming

StreamStatusEvent PUBLISHING code

When the screen sharing stream is published, preview video stream is created with method
Session.createStream() , and function Stream.play() is called to start playback of the
stream in div element remoteVideo .

 }
};

if ($("#useMic").prop('checked')) {
 constraints.audio = {
 deviceId: $('#audioInput').val()
 };
}

constraints.video.type = "screen";
if ($("#woChromeExtension").prop('checked')) {
 constraints.video.withoutExtension = true;
}

 if (Browser.isFirefox()){
 constraints.video.mediaSource = $('#mediaSource').val();
 }

session.createStream({
 name: streamName,
 display: localVideo,
 constraints: constraints
 ...
}).publish();

session.createStream({
 name: streamName,
 display: localVideo,
 constraints: constraints
}).on(STREAM_STATUS.PUBLISHING, function(publishStream){
 /*

https://github.com/flashphoner/flashphoner_client/blob/5fca19dc9267eb665f197aa91d5cb42504803f98/examples/demo/streaming/screen-sharing/screen-sharing.js#L145
https://github.com/flashphoner/flashphoner_client/blob/5fca19dc9267eb665f197aa91d5cb42504803f98/examples/demo/streaming/screen-sharing/screen-sharing.js#L150
https://github.com/flashphoner/flashphoner_client/blob/5fca19dc9267eb665f197aa91d5cb42504803f98/examples/demo/streaming/screen-sharing/screen-sharing.js#L154
https://github.com/flashphoner/flashphoner_client/blob/5fca19dc9267eb665f197aa91d5cb42504803f98/examples/demo/streaming/screen-sharing/screen-sharing.js#L157
https://github.com/flashphoner/flashphoner_client/blob/5fca19dc9267eb665f197aa91d5cb42504803f98/examples/demo/streaming/screen-sharing/screen-sharing.js#L161

7. Receiving the event con�rming successful preview stream playback

StreamStatusEvent PLAYING code

8. Preview stream playback stop

Stream.stop() code

 * User can stop sharing screen capture using Chrome "stop" button.
 * Catch onended video track event and stop publishing.
 */
 document.getElementById(publishStream.id()).srcObject.getVideoTracks()
[0].onended = function (e) {
 publishStream.stop();
 };
 document.getElementById(publishStream.id()).addEventListener('resize',
function(event){
 resizeVideo(event.target);
 });
 setStatus(STREAM_STATUS.PUBLISHING);
 //play preview
 session.createStream({
 name: streamName,
 display: remoteVideo
 ...
 }).play();
}).on(STREAM_STATUS.UNPUBLISHED, function(){
 ...
}).on(STREAM_STATUS.FAILED, function(){
 ...
}).publish();

session.createStream({
 name: streamName,
 display: remoteVideo
}).on(STREAM_STATUS.PLAYING, function(previewStream){
 document.getElementById(previewStream.id()).addEventListener('resize',
function(event){
 resizeVideo(event.target);
 });
 //enable stop button
 onStarted(publishStream, previewStream);
}).on(STREAM_STATUS.STOPPED, function(){
 ...
}).on(STREAM_STATUS.FAILED, function(){
 ...
}).play();

function onStarted(publishStream, previewStream) {
 $("#publishBtn").text("Stop").off('click').click(function(){
 $(this).prop('disabled', true);
 previewStream.stop();

https://github.com/flashphoner/flashphoner_client/blob/5fca19dc9267eb665f197aa91d5cb42504803f98/examples/demo/streaming/screen-sharing/screen-sharing.js#L177
https://github.com/flashphoner/flashphoner_client/blob/5fca19dc9267eb665f197aa91d5cb42504803f98/examples/demo/streaming/screen-sharing/screen-sharing.js#L87

9. Receiving the event con�rming successful playback stop

StreamStatusEvent STOPPED code

On receiving the event, publishStream.stop() is called to stop screen sharing streaming

10. Screen sharing streaming stop by click on Chrome extension button

Stream.stop() code

11. Receiving the event con�rming successful streaming stop

StreamStatusEvent UNPUBLISHED code

 }).prop('disabled', false);
}

 session.createStream({
 name: streamName,
 display: remoteVideo
 }).on(STREAM_STATUS.PLAYING, function(previewStream){
 ...
 }).on(STREAM_STATUS.STOPPED, function(){
 publishStream.stop();
 }).on(STREAM_STATUS.FAILED, function(){
 ...
 }).play();

document.getElementById(publishStream.id()).srcObject.getVideoTracks()
[0].onended = function (e) {
 publishStream.stop();
};

session.createStream({
 name: streamName,
 display: localVideo,
 constraints: constraints
}).on(STREAM_STATUS.PUBLISHING, function(publishStream){
 ...
}).on(STREAM_STATUS.UNPUBLISHED, function(){
 setStatus(STREAM_STATUS.UNPUBLISHED);
 //enable start button
 onStopped();
}).on(STREAM_STATUS.FAILED, function(){
 ...
}).publish();

https://github.com/flashphoner/flashphoner_client/blob/5fca19dc9267eb665f197aa91d5cb42504803f98/examples/demo/streaming/screen-sharing/screen-sharing.js#L183
https://github.com/flashphoner/flashphoner_client/blob/5fca19dc9267eb665f197aa91d5cb42504803f98/examples/demo/streaming/screen-sharing/screen-sharing.js#L166
https://github.com/flashphoner/flashphoner_client/blob/5fca19dc9267eb665f197aa91d5cb42504803f98/examples/demo/streaming/screen-sharing/screen-sharing.js#L192

