Публикация с помощью RTMP кодировщика

Для проведения онлайн-трансляций могут использоваться специальные аппаратные либо программные устройства видеозахвата (Live Encoder). Подобные устройства или программы захватывают видеопоток и отправляют его на сервер по протоколу RTMP.

Web Call Server может принимать RTMP видеопоток с такого устройства или ПО (Wirecast, ffmpeg, OBS Studio, FMLE и т.п.) в кодеках H.264 + AAC или Sorenson Spark + Speex и раздавать этот видеопоток на браузеры и мобильные устройства.

Описание

Технические характеристики

- Прием входящих аудио / видеопотоков по протоколу RTMP
- Раздача полученного видеопотока на браузеры и платформы: любая из поддерживаемых WCS
- Использование технологий воспроизведения видеопотока: любая из поддерживаемых WCS

Поддержка кодеков

- Видео Н.264 + аудио ААС
- Видео Sorenson Spark + аудио Speex 16 kHz

Схема работы

- 1. Live Encoder соединяется с сервером по протоколу RTMP и отправляет команду publish.
- 2. Live Encoder отправляет RTMP поток на сервер.
- 3. Браузер устанавливает соединение по Websocket и отправляет команду playStream.
- 4. Браузер получает WebRTC поток и воспроизводит этот поток на странице.

Краткое руководство по тестированию

- 1. Для теста используем:
- 2. WCS сервер
- 3. OBS Studio
- 4. веб-приложение Player в браузере Chrome для воспроизведения потока
- 5. Настройте вещание RTMP-потока на адрес сервера, например,

rtmp://test1.flashphoner.com:1935/live/, ключ потока obsStream:

Settings			?	×
General	Stream Type	Custom Streaming Server		
Stream	URL Stream key	rtmp://test1.flashphoner.com:1935/live obsStream		
Output		Use authentication		
Audio				
Video				
Hotkeys				
Advanced				

6. Запустите вещание в OBS Studio:

7. Откройте веб-приложение Player. Укажите в поле **Stream** ключ потока и нажмите кнопку **Start**. Начнется трансляция захваченного потока:

	Player
WCS URL	wss://test1.flashphoner.com:844
Stream	obsStream
Volume	

Последовательность выполнения операций

Ниже приводится последовательность выполнения операций при трансляции RTMP потока на WCS сервер с внешнего источника вещания (Live Encoder)

Обработка параметров, указанных в URL потока

При публикации или воспроизведении RTMP-потока на WCS, в URL потока могут быть указаны параметры RTMP-соединения и параметры потока:

Здесь

- host WCS-сервер;
- connectParam1, connectParam2 параметры RTMP-соединения;
- streamName имя потока на сервере;
- streamParam1, streamParam2 Параметры потока.

WCS-сервер передает указанные параметры бэкенд-серверу в REST hook, в поле custom, например:

Connection parameters

Publishing parameters

```
URL:http://localhost:8081/apps/EchoApp/publishStream
OBJECT:
    "nodeId" : "Qb3rAjf3lzoy6PEl1WZkUhRG1DsTykgj@192.168.1.1",
    "appKey" : "flashStreamingApp",
    "sessionId" : "/127.0.0.1:5643/192.168.1.1:1935",
    "mediaSessionId" : "627990f9-8fe5-4e92-bb2a-863cc4eb43de",
    "name" : "stream1",
   "published" : true,
   "hasVideo" : false,
   "hasAudio" : true,
    "status" : "NEW",
    "width" : 0,
    "height" : 0,
   "bitrate" : 0,
   "minBitrate" : 0,
   "maxBitrate" : 0,
    "quality" : 0,
    "mediaProvider" : "Flash",
    "custom" : {
        "streamParam1" : "val1",
        "streamParam2" : "val2"
```

Эту возможность можно использовать, например, для авторизации клиента на бэкенд-сервере при публикации или воспроизведения RTMP-потока на WCS.

Передача параметров соединения как параметров потока

В некоторых случаях возникает необходимость передать параметры соединения, например, параметры авторизации, как параметры потока, например

rtmp://test.flashphoner.com:1935/live/test?auth=key

Эта возможность включается настройкой

rtmp_use_stream_params_as_connection=true

В этом случае вышеприведенный пример RTMP URL будет аналогичен следующему

rtmp://test.flashphoner.com:1935/live?auth=key/test

Указание серверного приложения при публикации RTMPпотока

При публикации RTMP-потока на WCS сервере можно указать приложение, которое будет использовано для взаимодействия с бэкенд-сервером, при помощи параметра в URL потока:

rtmp://host:1935/live?appKey=key1/streamName

Здесь

- host WCS-сервер;
- key1 ключ приложения на WCS-сервере;
- streamName ИМЯ ПОТОКА НА СЕРВЕРЕ

По умолчанию, если ключ приложения не указан, используется стандартное приложение flashStreamingApp.

Кроме того, приложение может быть указано явным образом как часть URL. Для этого необходимо в файле flashphoner.properties установить настройку

rtmp_appkey_source=app

Тогда приложение должно быть указано в URL потока как

rtmp://host:1935/key1/streamName

В этом случае значение <u>live</u> также рассматривается, как имя приложения, поэтому при публикации потока

rtmp://host:1935/live/streamName

на WCS сервере должно быть определено приложение live.

Публикация Sorenson Spark + Speex 16 kHz потока в контейнере FLV

WCS сервер принимает RTMP поток, закодированный в Sorenson Spark + Speex 16kHz в контейнере FLV. Такой поток можно опубликовать, например, при помощи ffmpeg следующим образом:

```
ffmpeg -re -i BigBuckBunny.flv -preset ultrafast -ar 16000 -ac 1 -acodec
speex -vcodec flv -strict -2 -f flv
rtmp://test1.flashphoner.com:1935/live/test
```

Ограничения

- Для дальнейшей обработки на сервере, в том числе для записи, такой поток будет транскодирован в H.264 + AAC.
- 2. При публикации в SDP для видео и для аудио должны быть указаны payload type 127 и 97 соответственно, например

```
v=0
o=- 1988962254 1988962254 IN IP4 0.0.0.0
c=IN IP4 0.0.0.0
t=0 0
a=sdplang:en
m=video 0 RTP/AVP 127
a=rtpmap:127 FLV/90000
a=sendonly
m=audio 0 RTP/AVP 97 8 0
a=rtpmap:97 SPEEX/16000
a=rtpmap:8 PCMA/8000
a=rtpmap:0 PCMU/8000
a=sendonly
```

Контроль получения медиа данных по RTMP

В некоторых случаях, если RTMP-кодировщик не поддерживает отсылку Keep Alive пакетов, либо этот механизм отключен по другим причинам при помощи настройки

keep_alive.algorithm=NONE

возникает необходимость контролировать RTMP-соединения и закрывать их, если в течение длительного времени не передается никаких данных. Для этого

предусмотрены следующие настройки.

Контроль наличия медиа данных в потоке

Начиная со сборки 5.2.533, контроль наличия медиа данных в RTMP потоке включается при помощи настройки в файле flashphoner.properties:

flash_rtp_activity_enabled=true

Таймаут на чтение данных

Таймаут на чтение управляется при помощи следующих параметров в файле flashphoner.properties:

rtmp.server_read_socket_timeout=120

В данном случае RTMP-соединение будет закрыто, если в течение 120 секунд из него не было принято никаких данных.

Таймаут на запись данных

Таймаут на запись управляется при помощи следующего параметра

rtmp.server_write_socket_timeout=120

В данном случае RTMP-соединение будет закрыто, если в течение 120 секунд в него не было отправлено никаких данных.

Таймаут на чтение и запись данных

Таймаут на чтение и запись управляется при помощи следующего параметра

rtmp.server_socket_timeout=120

В данном случае RTMP-соединение будет закрыто, если в течение 120 секунд из него не было принято и в него не было отправлено никаких данных.

Поворот изображения публикуемого RTMP потока

При публикации RTMP потока на WCS, можно повернуть изображение, отправив необходимые RTMP-метаданные. Это может быть полезным для изменения ориентации картинки на лету при публикации потока с мобильного источника.

Для того, чтобы повернуть изображение на указанный угол, клиент должен прислать серверу RTMP-метаданные с полем orientation. Поле может принимать следующие значения:

Значение поля	Угол поворота в градусах
0	0
1	90
2	180
3	270

Изображение поворачивается по часовой стрелке.

Настройка

Поворот изображения по метаданным включается при помощи следующей настройки в файле flashphoner.properties:

video_filter_enable_rotate=true

> Attention

Поворот изображения работает только при использовании транскодирования.

Тестирование

- 1. Для теста используем:
- 2. WCS сервер с включенной поддержкой поворота изображения по метаданным
- 3. Приложение Flash Streaming для публикации и вращения изображения
- 4. Приложение Player для воспроизведения потока
- 5. Откройте приложение Flash Streaming. Введите имя потока test, укажите желаемые параметры публикации потока

	Flash Streaming
Server:	rtmp://test2.flashphoner.com:1935
Publish	test Start
Play	Stream-nCQJ Start
Rot	video ✓ audio ✓ video
1.0u	width height fps quality keyframe
H2 co	64 🔻 848 480 30 80 60

6. Нажмите Login	, затем Start	. Начнется публикация потока
------------------	---------------	------------------------------

	Flash Streaming
Server:	rtmp://test2.flashphoner.com:1935 Logout CONNECTED
Publish	Test Stop
Play	Stream-nCQJ Start
	audio video
Rota	te camera 0 90 180 270
H20 co	width height fps quality keyframe 64 - 848 480 30 80 60 dec

7. Откройте в другой вкладке или в другом браузере приложение Player, воспроизведите поток test

	Player
WCS URL	wss://test2.flashphoner.com:844
Stream	test
Volume	
Full Screen	55
	PLAYING Stop

8. В приложении Flash Player нажмите кнопку 180 в разделе Rotate camera. В приложении Player отобразится изображение, повернутое на 180 градусов по

часовой стрелке

	Player
WCS URI	wss://test2_flashnhoner.com/844/
04	
Stream	Iest
Volume	
Full Screen	::
	PLAYING Stop

Разработчику

Отправка метаданных для поворота изображения реализована в приложении Flash Player следующим образом:

code

```
private function rotate(degree:Number):void {
   var metaDataObj:Object = new Object();
   switch(degree) {
      case 0:
      Logger.info("rotate camera to 0");
      metaDataObj.orientation = 0;
      break;
   case 90:
      Logger.info("rotate camera to 90");
      metaDataObj.orientation = 1;
      break;
   case 180:
      Logger.info("rotate camera to 180");
      metaDataObj.orientation = 2;
      break;
   case 270:
      Logger.info("rotate camera to 270");
```

```
metaDataObj.orientation = 3;
        break;
        default:
            metaDataObj.orientation = 0;
            break;
     }
     sendMetaData(metaDataObj);
}
private function sendMetaData(data:Object):void{
     if (publishStream != null) {
        publishStream != null) {
        publishStream.send("@setDataFrame", "onMetaData", data);
     }
}
```

Обратите внимание, что отправляется не угол, а соответствующее значение поля orientation.

Поворот изображения потока, опубликованного при помощи ffmpeg

RTMP кодировщик ffmpeg дает возможность отправить метаданные ориентации изображения серверу при помощи ключей командной строки:

ffmpeg -i input.mp4 -metadata:s:v rotate=90 -vcodec copy -acodec copy -strict
-2 -f flv rtmp://test1.flashphoner.com:1935/live/stream_ffmpeg

Отметим, что настройка поворота для ffmpeg указывается в градусах, при этом на сервер передается соответствующее значение поля orientation.

Управление размером буфера при декодировании

Если RTMP поток публикуется программным кодировщиком с поддержкой аппаратного ускорения на GPU NVIDIA, и содержит В-фреймы, при проигрывании такого потока по RTMP или HLS в некоторых плеерах картинка подергивается. В связи с этим, в сборке 5.2.863 была добавлена настройка, которая задает максимальный размер буфера декодирования, передаваемый в SPS

h264_sps_max_dec_frame_buffering=-1

По умолчанию, размер буфера не ограничен. Это убирает подергивания картинки, но может приводить к задержкам при излишней буферизации. В этом случае, можно ограничить буфер двумя кадрами (значение по умолчанию до сборки 5.2.863)

h264_sps_max_dec_frame_buffering=2

или большим числом, чтобы убрать подергивания картинки и не допустить задержки.

Буферизация входящего RTMP потока

При публикации RTMP потока в большом разрешении, с высоким битрейтом при нестабильном канале поток может играть по WebRTC не плавно, с фризами или снижением FPS. Чтобы предотвратить такое поведение, необходимо буферизовать входящий поток

rtmp_in_buffer_enabled=true

Параметр Описание Значение по умолчани Ю 300 Исходный объем буфер rtmp_in_buffer_start _size а, мс rtmp_in_buffer_initi al_size 2000 Максимальный объем буфера, мс -1 (не ограничено) rtmp_in_buffer_max_b Максимальное количес ufferings_allowed тво увеличений буфера 100 rtmp_in_buffer_polli Периодичность провер ки наличия данных в бу ng_time фере, мс 1000 rtmp_in_buffer_overf Максимально допусти low_allowed_deviatio мая разность между ми нимальном и максимал ьным объемами буфер а, мс rtmp_in_buffer_overf
low_deviation_window Размер окна, в течение 30000 которого отслеживаетс я разность, мс 0.15 rtmp_in_buffer_overf Максимально допусти low_rate мая частота переполне ний буфера rtmp_in_buffer_clear 30000 При наполнении буфер _threshold а до указанной величи ны, сбросить все данн ые, объем которых пре вышает максимальны й, мс

Адаптивный буфер для входящего RTMP потока имеет следующие тонкие настройки:

Прекращение буферизации потока при ухудшении его характеристик

Если программному RTMP кодировщику не хватает производительности системы, на которой он запущен, или не хватает пропускной способности канала, метки времени в пакетах могут давать задержку относительно времени сервера. Буферизация такого потока будет давать периодические фризы при проигрывании. Поэтому в сборке 5.2.1311 добавлена настройка для отключения буферизации и пропуска полученного трафика напрямую в движок сервера

rtmp_in_buffer_input_delay_threshold=0

По умолчанию, при включенной буферизации RTMP трафик будет всегда помещаться в буфер. Буферизация может быть отключена при достижении определенного значения задержки в миллисекундах

rtmp_in_buffer_input_delay_threshold=3000

При этом буфер освобождается и переходит в статус **PASSTHROUGH**. Даже если задержка затем снизится, буфер останется в таком статусе. и поток не будет буферизоваться до окончания публикации.

Рекомендуемые настройки буферизации для RTMP потоков высокого качества

При публикации RTMP потоков высокого качества рекомендуются следующие настройки буферизации

rtmp_in_buffer_enabled=true
rtmp_in_buffer_start_size=1000
rtmp_in_buffer_initial_size=3000
rtmp_in_buffer_polling_time=30
rtmp_in_buffer_max_bufferings_allowed=-1

В этом случае публикуемый поток будет играть плавно у зрителей и в микшере.

Определение параметров публикуемого потока по метаданным или медиапакетам

По умолчанию, возможные параметры публикуемого RTMP потока определяются файлом настройки SDP. В сборке 5.2.1862 добавлена настройка, которая включает автоматическое определение параметров публикуемого потока по метаданным или по информации в медиапакетах

Настройка включена по умолчанию. В этом случае WCS корректирует SDP в соотвествии с полученными от публикующего клиента метаданными или по информации из полученных медиапакетов.

В сборке 5.2.1935 добавлена настройка интервала, в течение которого WCS пытается определить метаданные потока по полученным медиапакетам

flash_detect_metadata_by_traffic_timeout=1000

По умолчанию интервал составляет 1000 мс.

Известные проблемы

1. Поток, содержащий В-фреймы, не воспроизводится либо воспроизводится с артефактами (задержки, подергивания)

И Решение

- изменить настройки кодировщика таким образом, чтобы исключить использование В-фреймов (понизить профиль кодирования, указать в командной строке и т.п.).
- транскодировать поток, в этом случае в выходном потоке транскодера В-фреймов не будет

2. ААС фреймы типа 0 не поддерживаются декодером FFmpeg и будут игнорироваться при воспроизведении захваченного потока

Использовать кодек Fraunhofer при помощи настройки

use_fdk_aac=true

3. При публикации и последующем воспроизведении и записи H264 + AAC потока возможна рассинхронизация видео и звука, либо полное отсутствие звука.

ۏ Симптомы

При воспроизведении H264 + AAC потока, опубликованного на сервере, а также в записи потока, звук не синхронизирован с видео или отсутствует

✓ Решение
a) установить настройку в файле flashphoner.properties
disable_drop_aac_frame=true
Эта настройка, в том числе, отключает игнорирование ААС фреймов.
b) использовать кодек Fraunhofer при помощи настройки

4. При преобразовании звуковой дорожки ААС к частоте дискретизации 11025 Гц звук искажен или отсутствует

🚺 Симптомы

При публикации H264 + AAC потока на WCS сервере и воспроизведении его как H264 + AAC с частотой дискретизации звука 11025 Гц звук искажен или отсутствует

/ Решение

Не использовать частоту дискретизации звука 11025 Гц, либо избегать преобразования звука к данной частоте, например, не указывать данную частоту в файлах настроек SDP.

5. Некоторые функции RTMP не поддерживаются и будут игнорированы

- FCSubscribe
- FCPublish
- FCUnpublish
- onStatus
- onUpstreamBase
- releaseStream

6. Не все RTMP-кодировщики поддерживают Кеер Alive

🤨 Симптомы
Частые разрывы соединения при публикации потока с RTMP-кодировщика
✓ Решение
Отключить Keep Alive для RTMP на сервере при помощи настройки в файле flashphoner.properties
keep_alive.enabled=websocket,rtmfp

7. При воспроизведении потока, публикуемого из RTMP-кодировщика, как HLS, могут наблюдаться фризы, если GOP не кратен частоте кадров публикуемого файла

😝 Симптомы

При воспроизведении RTMP-потока как HLS наблюдаются фризы

		Pe	ец	Je	ни	IE
--	--	----	----	----	----	----

Установить в параметрах кодировщика GOP равный или кратный частоте кадров публикуемого файла. Например, если публикуется файл с fps 25, необходимо указать GOP 50.

8. При воспроизведении потока, опубликованного из RTMP кодировщика, как WebRTC, звук в потоке низкого качества

б Симптомы
При воспроизведении RTMP потока как WebRTC звук подходит для передачи речи, но не музыки
✓ Решение
Установить настройку битрейта кодирования в Opus в соответствии с битрейтом публикации звука, например
opus.encoder.bitrate=160000
если звук в RTMP потоке публикуется с битрейтом 160 кбит/с.

9. При публикации RTMP потока H264+speex (например, при помощи Flash) большая нагрузка на процессор при транскодинге звука

10. Поток с неподдерживаемым аудио или видео кодеком не может быть опубликован

😝 Симптомы
RTMP поток с MP3 или AC3 аудио не публикуется, в логе сервера сообщения
11:01:00,921 WARN ServerHandler - RTMP-pool-15-thread-1 Codecs not supported! audio: NoCodec, video: NoCodec

🗸 Решение

Перекодировать поток к поддерживаемым кодекам при публикации при помощи соответствующих настроек кодировщика